000276086 001__ 276086
000276086 005__ 20250202000642.0
000276086 0247_ $$2pmc$$apmc:PMC11742661
000276086 0247_ $$2doi$$a10.1111/jnc.16303
000276086 0247_ $$2pmid$$apmid:39825728
000276086 0247_ $$2ISSN$$a0022-3042
000276086 0247_ $$2ISSN$$a1471-4159
000276086 0247_ $$2altmetric$$aaltmetric:173182926
000276086 037__ $$aDZNE-2025-00167
000276086 041__ $$aEnglish
000276086 082__ $$a610
000276086 1001_ $$00000-0003-2287-6495$$aAbaei, Alireza$$b0
000276086 245__ $$aSub-Microliter 1H Magnetic Resonance Spectroscopy for In Vivo High-Spatial Resolution Metabolite Quantification in the Mouse Brain.
000276086 260__ $$aOxford$$bWiley-Blackwell$$c2025
000276086 3367_ $$2DRIVER$$aarticle
000276086 3367_ $$2DataCite$$aOutput Types/Journal article
000276086 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1737453615_5865
000276086 3367_ $$2BibTeX$$aARTICLE
000276086 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276086 3367_ $$00$$2EndNote$$aJournal Article
000276086 520__ $$aProton magnetic resonance spectroscopy (MRS) offers a non-invasive, repeatable, and reproducible method for in vivo metabolite profiling of the brain and other tissues. However, metabolite fingerprinting by MRS requires high signal-to-noise ratios for accurate metabolite quantification, which has traditionally been limited to large volumes of interest, compromising spatial fidelity. In this study, we introduce a new optimized pipeline that combines LASER MRS acquisition at 11.7 T with a cryogenic coil and advanced offline pre- and post-processing. This approach achieves a signal-to-noise ratio sufficient to reliably quantify 19 distinct metabolites in a volume as small as 0.7 μL within the mouse brain. The resulting high spatial resolution and spectral quality enable the identification of distinct metabolite fingerprints in small, specific regions, as demonstrated by characteristic differences in N-acetylaspartate, glutamate, taurine, and myo-inositol between the motor and somatosensory cortices. We demonstrated a decline in taurine and glutamate in the primary motor cortex between 5 and 11 months of age, against the stability of other metabolites. Further exploitation to cortical layer-specific metabolite fingerprinting of layer I-III to layer VI-V in the primary motor cortex, with the latter showing reduced taurine and phosphoethanolamine levels, demonstrates the potential of this pipeline for detailed in vivo metabolite fingerprinting of cortical areas and subareas.
000276086 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000276086 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x1
000276086 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000276086 650_7 $$2Other$$acortical areas
000276086 650_7 $$2Other$$ahigh spatial resolution
000276086 650_7 $$2Other$$amagnetic resonance spectroscopy
000276086 650_7 $$2Other$$ametabolite profile
000276086 650_7 $$01EQV5MLY3D$$2NLM Chemicals$$aTaurine
000276086 650_7 $$03KX376GY7L$$2NLM Chemicals$$aGlutamic Acid
000276086 650_7 $$04L6452S749$$2NLM Chemicals$$aInositol
000276086 650_2 $$2MeSH$$aAnimals
000276086 650_2 $$2MeSH$$aMice
000276086 650_2 $$2MeSH$$aProton Magnetic Resonance Spectroscopy: methods
000276086 650_2 $$2MeSH$$aMice, Inbred C57BL
000276086 650_2 $$2MeSH$$aMale
000276086 650_2 $$2MeSH$$aBrain: metabolism
000276086 650_2 $$2MeSH$$aBrain: diagnostic imaging
000276086 650_2 $$2MeSH$$aTaurine: metabolism
000276086 650_2 $$2MeSH$$aTaurine: analysis
000276086 650_2 $$2MeSH$$aGlutamic Acid: metabolism
000276086 650_2 $$2MeSH$$aGlutamic Acid: analysis
000276086 650_2 $$2MeSH$$aFemale
000276086 650_2 $$2MeSH$$aInositol: metabolism
000276086 7001_ $$00000-0003-4266-4780$$aDeelchand, Dinesh K$$b1
000276086 7001_ $$0P:(DE-2719)9001967$$aKassubek, Jan$$b2
000276086 7001_ $$0P:(DE-2719)2812851$$aRoselli, Francescois$$b3
000276086 7001_ $$00000-0001-8844-3583$$aRasche, Volker$$b4
000276086 773__ $$0PERI:(DE-600)2020528-4$$a10.1111/jnc.16303$$gVol. 169, no. 1, p. e16303$$n1$$pe16303$$tJournal of neurochemistry$$v169$$x0022-3042$$y2025
000276086 8564_ $$uhttps://pub.dzne.de/record/276086/files/DZNE-2025-00167%20SUP.pdf
000276086 8564_ $$uhttps://pub.dzne.de/record/276086/files/DZNE-2025-00167.pdf$$yOpenAccess
000276086 8564_ $$uhttps://pub.dzne.de/record/276086/files/DZNE-2025-00167%20SUP.pdf?subformat=pdfa$$xpdfa
000276086 8564_ $$uhttps://pub.dzne.de/record/276086/files/DZNE-2025-00167.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276086 909CO $$ooai:pub.dzne.de:276086$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000276086 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001967$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000276086 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812851$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000276086 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000276086 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x1
000276086 9141_ $$y2025
000276086 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROCHEM : 2022$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-01$$wger
000276086 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276086 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
000276086 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000276086 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000276086 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-01$$wger
000276086 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000276086 9201_ $$0I:(DE-2719)5000077$$kClinical Study Center (Ulm)$$lClinical Study Center (Ulm)$$x0
000276086 9201_ $$0I:(DE-2719)1910001$$kAG Roselli$$lMetabolic Changes in Neurodegeneration$$x1
000276086 980__ $$ajournal
000276086 980__ $$aVDB
000276086 980__ $$aUNRESTRICTED
000276086 980__ $$aI:(DE-2719)5000077
000276086 980__ $$aI:(DE-2719)1910001
000276086 9801_ $$aFullTexts