001     276090
005     20250120165734.0
037 _ _ |a DZNE-2025-00171
041 _ _ |a English
082 _ _ |a 004
100 1 _ |a Perrakis, Konstantinos
|0 P:(DE-2719)2812021
|b 0
245 _ _ |a Regularized Joint Mixture Models
260 _ _ |a Brookline, MA
|c 2023
|b Microtome Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1737366612_4999
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Regularized regression models are well studied and, under appropriate conditions, offerfast and statistically interpretable results. However, large data in many applications areheterogeneous in the sense of harboring distributional differences between latent groups.Then, the assumption that the conditional distribution of response Y given features X is thesame for all samples may not hold. Furthermore, in scientific applications, the covariancestructure of the features may contain important signals and its learning is also affected bylatent group structure. We propose a class of mixture models for paired data pX, Y q thatcouples together the distribution of X (using sparse graphical models) and the conditionalY | X (using sparse regression models). The regression and graphical models are specificto the latent groups and model parameters are estimated jointly. This allows signals ineither or both of the feature distribution and regression model to inform learning of latentstructure and provides automatic control of confounding by such structure. Estimationis handled via an expectation-maximization algorithm, whose convergence is establishedtheoretically. We illustrate the key ideas via empirical examples. An R package is availableat https://github.com/k-perrakis/regjmix.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
700 1 _ |a Lartigue, Thomas-Alan-Jean
|0 P:(DE-2719)9001227
|b 1
|u dzne
700 1 _ |a Dondelinger, Frank
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mukherjee, Sach
|0 P:(DE-2719)2811372
|b 3
|e Last author
|u dzne
773 _ _ |0 PERI:(DE-600)2042762-1
|n 19
|p 1 - 47
|t Journal of machine learning research
|v 24
|y 2023
|x 1532-4435
856 4 _ |u https://jmlr.org/papers/volume24/21-0796/21-0796.pdf
856 4 _ |u https://pub.dzne.de/record/276090/files/DZNE-2025-00171.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/276090/files/DZNE-2025-00171.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:276090
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)9001227
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811372
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MACH LEARN RES : 2022
|d 2024-12-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-06
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MACH LEARN RES : 2022
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-06
920 1 _ |0 I:(DE-2719)1013030
|k AG Mukherjee
|l Statistics and Machine Learning
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013030


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21