000276118 001__ 276118
000276118 005__ 20250209000702.0
000276118 0247_ $$2doi$$a10.52294/001c.123217
000276118 0247_ $$2altmetric$$aaltmetric:167247119
000276118 037__ $$aDZNE-2025-00199
000276118 1001_ $$00009-0007-1280-7361$$aXu, Marshall$$b0
000276118 245__ $$aVesselBoost: A Python Toolbox for Small Blood Vessel Segmentation in Human Magnetic Resonance Angiography Data
000276118 260__ $$aRoseville$$bOrganization for Human Brain Mapping$$c2024
000276118 3367_ $$2DRIVER$$aarticle
000276118 3367_ $$2DataCite$$aOutput Types/Journal article
000276118 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738660699_16422
000276118 3367_ $$2BibTeX$$aARTICLE
000276118 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276118 3367_ $$00$$2EndNote$$aJournal Article
000276118 520__ $$aMagnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain’s blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we explore their application to high-resolution MRA data and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation toolbox, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. To enhance the segmentation models’ robustness and accuracy, VesselBoost employs an innovative data augmentation technique, which captures the resemblance of vascular structures across scales by zooming in or out on input image patches—virtually creating diverse scale vascular data. This approach enables detailed vascular segmentation and ensures the model’s ability to generalize across various scales of vascular structures.
000276118 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000276118 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000276118 7001_ $$aRibeiro, Fernanda L.$$b1
000276118 7001_ $$aBarth, Markus$$b2
000276118 7001_ $$aBernier, Michaël$$b3
000276118 7001_ $$aBollmann, Steffen$$b4
000276118 7001_ $$aChatterjee, Soumick$$b5
000276118 7001_ $$aCognolato, Francesco$$b6
000276118 7001_ $$aGulban, Omer F.$$b7
000276118 7001_ $$aItkyal, Vaibhavi$$b8
000276118 7001_ $$aLiu, Siyu$$b9
000276118 7001_ $$0P:(DE-2719)9002178$$aMattern, Hendrik$$b10$$udzne
000276118 7001_ $$aPolimeni, Jonathan R.$$b11
000276118 7001_ $$aShaw, Thomas B.$$b12
000276118 7001_ $$0P:(DE-2719)2810706$$aSpeck, Oliver$$b13$$udzne
000276118 7001_ $$aBollmann, Saskia$$b14
000276118 773__ $$0PERI:(DE-600)3204774-5$$a10.52294/001c.123217$$gVol. 4$$p10.52294/001c.123217$$tAperture neuro$$v4$$x2957-3963$$y2024
000276118 8564_ $$uhttps://pub.dzne.de/record/276118/files/DZNE-2025-00199.pdf$$yOpenAccess
000276118 8564_ $$uhttps://pub.dzne.de/record/276118/files/DZNE-2025-00199.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276118 909CO $$ooai:pub.dzne.de:276118$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000276118 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002178$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000276118 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810706$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b13$$kDZNE
000276118 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000276118 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276118 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000276118 9201_ $$0I:(DE-2719)1340009$$kAG Speck$$lLinking Imaging Projects$$x0
000276118 9201_ $$0I:(DE-2719)1310010$$kAG Schreiber$$lMixed Cerebral Pathologies and Cognitive Aging$$x1
000276118 9801_ $$aFullTexts
000276118 980__ $$ajournal
000276118 980__ $$aVDB
000276118 980__ $$aUNRESTRICTED
000276118 980__ $$aI:(DE-2719)1340009
000276118 980__ $$aI:(DE-2719)1310010