001     276118
005     20250209000702.0
024 7 _ |a 10.52294/001c.123217
|2 doi
024 7 _ |a altmetric:167247119
|2 altmetric
037 _ _ |a DZNE-2025-00199
100 1 _ |a Xu, Marshall
|0 0009-0007-1280-7361
|b 0
245 _ _ |a VesselBoost: A Python Toolbox for Small Blood Vessel Segmentation in Human Magnetic Resonance Angiography Data
260 _ _ |a Roseville
|c 2024
|b Organization for Human Brain Mapping
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738660699_16422
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Magnetic resonance angiography (MRA) performed at ultra-high magnetic field provides a unique opportunity to study the arteries of the living human brain at the mesoscopic level. From this, we can gain new insights into the brain’s blood supply and vascular disease affecting small vessels. However, for quantitative characterization and precise representation of human angioarchitecture to, for example, inform blood-flow simulations, detailed segmentations of the smallest vessels are required. Given the success of deep learning-based methods in many segmentation tasks, we explore their application to high-resolution MRA data and address the difficulty of obtaining large data sets of correctly and comprehensively labelled data. We introduce VesselBoost, a vessel segmentation toolbox, which utilizes deep learning and imperfect training labels for accurate vasculature segmentation. To enhance the segmentation models’ robustness and accuracy, VesselBoost employs an innovative data augmentation technique, which captures the resemblance of vascular structures across scales by zooming in or out on input image patches—virtually creating diverse scale vascular data. This approach enables detailed vascular segmentation and ensures the model’s ability to generalize across various scales of vascular structures.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: pub.dzne.de
700 1 _ |a Ribeiro, Fernanda L.
|b 1
700 1 _ |a Barth, Markus
|b 2
700 1 _ |a Bernier, Michaël
|b 3
700 1 _ |a Bollmann, Steffen
|b 4
700 1 _ |a Chatterjee, Soumick
|b 5
700 1 _ |a Cognolato, Francesco
|b 6
700 1 _ |a Gulban, Omer F.
|b 7
700 1 _ |a Itkyal, Vaibhavi
|b 8
700 1 _ |a Liu, Siyu
|b 9
700 1 _ |a Mattern, Hendrik
|0 P:(DE-2719)9002178
|b 10
|u dzne
700 1 _ |a Polimeni, Jonathan R.
|b 11
700 1 _ |a Shaw, Thomas B.
|b 12
700 1 _ |a Speck, Oliver
|0 P:(DE-2719)2810706
|b 13
|u dzne
700 1 _ |a Bollmann, Saskia
|b 14
773 _ _ |a 10.52294/001c.123217
|g Vol. 4
|0 PERI:(DE-600)3204774-5
|p 10.52294/001c.123217
|t Aperture neuro
|v 4
|y 2024
|x 2957-3963
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/276118/files/DZNE-2025-00199.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/276118/files/DZNE-2025-00199.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:276118
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9002178
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2810706
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 1 _ |0 I:(DE-2719)1340009
|k AG Speck
|l Linking Imaging Projects
|x 0
920 1 _ |0 I:(DE-2719)1310010
|k AG Schreiber
|l Mixed Cerebral Pathologies and Cognitive Aging
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1340009
980 _ _ |a I:(DE-2719)1310010


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21