001     276157
005     20250209000722.0
024 7 _ |a 10.1007/s00259-024-06961-x
|2 doi
024 7 _ |a pmid:39557690
|2 pmid
024 7 _ |a 1619-7070
|2 ISSN
024 7 _ |a 1619-7089
|2 ISSN
024 7 _ |a altmetric:173801657
|2 altmetric
037 _ _ |a DZNE-2025-00229
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Lopes, Leonor
|0 0000-0002-9536-6691
|b 0
245 _ _ |a Dopaminergic PET to SPECT domain adaptation: a cycle GAN translation approach.
260 _ _ |a Heidelberg [u.a.]
|c 2025
|b Springer-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738669398_12998
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dopamine transporter imaging is routinely used in Parkinson's disease (PD) and atypical parkinsonian syndromes (APS) diagnosis. While [11C]CFT PET is prevalent in Asia with a large APS database, Europe relies on [123I]FP-CIT SPECT with limited APS data. Our aim was to develop a deep learning-based method to convert [11C]CFT PET images to [123I]FP-CIT SPECT images, facilitating multicenter studies and overcoming data scarcity to promote Artificial Intelligence (AI) advancements.A CycleGAN was trained on [11C]CFT PET (n = 602, 72%PD) and [123I]FP-CIT SPECT (n = 1152, 85%PD) images from PD and non-parkinsonian control (NC) subjects. The model generated synthetic SPECT images from a real PET test set (n = 67, 75%PD). Synthetic images were quantitatively and visually evaluated.Fréchet Inception Distance indicated higher similarity between synthetic and real SPECT than between synthetic SPECT and real PET. A deep learning classification model trained on synthetic SPECT achieved sensitivity of 97.2% and specificity of 90.0% on real SPECT images. Striatal specific binding ratios of synthetic SPECT were not significantly different from real SPECT. The striatal left-right differences and putamen binding ratio were significantly different only in the PD cohort. Real PET and real SPECT had higher contrast-to-noise ratio compared to synthetic SPECT. Visual grading analysis scores showed no significant differences between real and synthetic SPECT, although reduced diagnostic performance on synthetic images was observed.CycleGAN generated synthetic SPECT images visually indistinguishable from real ones and retained disease-specific information, demonstrating the feasibility of translating [11C]CFT PET to [123I]FP-CIT SPECT. This cross-modality synthesis could enhance further AI classification accuracy, supporting the diagnosis of PD and APS.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a CFT PET
|2 Other
650 _ 7 |a Cycle GAN
|2 Other
650 _ 7 |a Domain adaptation
|2 Other
650 _ 7 |a FP-CIT SPECT
|2 Other
650 _ 7 |a Parkinson’s disease
|2 Other
650 _ 7 |a Dopamine
|0 VTD58H1Z2X
|2 NLM Chemicals
650 _ 7 |a Dopamine Plasma Membrane Transport Proteins
|2 NLM Chemicals
650 _ 7 |a 2-carbomethoxy-8-(3-fluoropropyl)-3-(4-iodophenyl)tropane
|0 155797-99-2
|2 NLM Chemicals
650 _ 7 |a Tropanes
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Tomography, Emission-Computed, Single-Photon: methods
|2 MeSH
650 _ 2 |a Positron-Emission Tomography: methods
|2 MeSH
650 _ 2 |a Parkinson Disease: diagnostic imaging
|2 MeSH
650 _ 2 |a Parkinson Disease: metabolism
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Dopamine: metabolism
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Dopamine Plasma Membrane Transport Proteins: metabolism
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Tropanes
|2 MeSH
700 1 _ |a Jiao, Fangyang
|b 1
700 1 _ |a Xue, Song
|b 2
700 1 _ |a Pyka, Thomas
|b 3
700 1 _ |a Krieger, Korbinian
|b 4
700 1 _ |a Ge, Jingjie
|b 5
700 1 _ |a Xu, Qian
|b 6
700 1 _ |a Fahmi, Rachid
|b 7
700 1 _ |a Spottiswoode, Bruce
|b 8
700 1 _ |a Soliman, Ahmed
|b 9
700 1 _ |a Buchert, Ralph
|b 10
700 1 _ |a Brendel, Matthias
|0 P:(DE-2719)9001539
|b 11
|u dzne
700 1 _ |a Hong, Jimin
|b 12
700 1 _ |a Guan, Yihui
|b 13
700 1 _ |a Bassetti, Claudio L A
|b 14
700 1 _ |a Rominger, Axel
|b 15
700 1 _ |a Zuo, Chuantao
|b 16
700 1 _ |a Shi, Kuangyu
|b 17
700 1 _ |a Wu, Ping
|b 18
773 _ _ |a 10.1007/s00259-024-06961-x
|g Vol. 52, no. 3, p. 851 - 863
|0 PERI:(DE-600)2098375-X
|n 3
|p 851 - 863
|t European journal of nuclear medicine and molecular imaging
|v 52
|y 2025
|x 1619-7070
856 4 _ |u https://pub.dzne.de/record/276157/files/DZNE-2025-00229%20SUP.docx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/276157/files/DZNE-2025-00229.pdf
856 4 _ |u https://pub.dzne.de/record/276157/files/DZNE-2025-00229%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/276157/files/DZNE-2025-00229%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/276157/files/DZNE-2025-00229%20SUP.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/276157/files/DZNE-2025-00229.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:276157
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)9001539
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J NUCL MED MOL I : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-05
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J NUCL MED MOL I : 2022
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 1 _ |0 I:(DE-2719)1110007
|k AG Haass
|l Molecular Neurodegeneration
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110007
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21