000276277 001__ 276277
000276277 005__ 20250204165928.0
000276277 0247_ $$2doi$$a10.1016/j.bpsgos.2024.100432
000276277 037__ $$aDZNE-2025-00256
000276277 082__ $$a610
000276277 1001_ $$00000-0002-4156-0624$$aBlaze, Jennifer$$b0
000276277 245__ $$aNeuron-Specific Glycine Metabolism Links Transfer RNA Epitranscriptomic Regulation to Complex Behaviors
000276277 260__ $$aAmsterdam$$bElsevier$$c2025
000276277 3367_ $$2DRIVER$$aarticle
000276277 3367_ $$2DataCite$$aOutput Types/Journal article
000276277 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738670282_16407
000276277 3367_ $$2BibTeX$$aARTICLE
000276277 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276277 3367_ $$00$$2EndNote$$aJournal Article
000276277 520__ $$aBackground: The presence of treatment resistance in neuropsychiatric disease suggests that novel mechanism-based discoveries and therapies could benefit the field, with a viable candidate being transfer RNA (tRNA) epitranscriptomics. Nsun2 tRNA methyltransferase depletion in mature neurons elicits changes in complex behaviors relevant for fear, anxiety, and other neuropsychiatric phenotypes. However, it remains unclear whether this is due to dysregulated tRNAs or metabolic shifts that impact the neuronal translatome by activation of stress messengers together with alterations in amino acid supply.Methods: To link specific molecular alterations resulting from neuronal Nsun2 ablation to neuropsychiatric phenotypes, we used drug-induced phosphoactivation of stress response translation initiation factors together with disruption of NSUN2-regulated glycine tRNAs and cell type–specific ablation of the glycine cleavage system modeling the excessive upregulation of this amino acid in the Nsun2-deficient brain. Changes in extracellular glycine levels were monitored by an optical glycine Förster resonance energy transfer (FRET) sensor in the hippocampus, and behavioral phenotyping included cognition, anxiety-like behavior, and behavioral despair.Results: Increased motivated escape behaviors were specifically observed in mice with neuron-specific ablation of Gldc, resulting in an excess in cortical glycine levels comparable to a similar phenotype in mice after deletion of neuronal Nsun2. None of these phenotypes were observed in mice treated with tunicamycin for chemoactivation of integrative stress response pathways or in mice genetically engineered for decreased glycine tRNA gene dosage. In the Nsun2-deficient brain, dynamic glycine profiles in the hippocampal extracellular space were fully maintained at baseline and in the context of neuronal activity.Conclusions: Alterations in neuronal glycine metabolism, resulting from targeted ablation of the glycine cleavage system or disruption of the tRNA regulome, elicit changes in complex behaviors in mice relevant for neuropsychiatric phenotypes.
000276277 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000276277 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000276277 7001_ $$aEvans, Viviana Dolores$$b1
000276277 7001_ $$aFeria Pliego, Jessica Abigail$$b2
000276277 7001_ $$aUnichenko, Petr$$b3
000276277 7001_ $$aJavidfar, Behnam$$b4
000276277 7001_ $$aHeissel, Soeren$$b5
000276277 7001_ $$aAlwaseem, Hanan$$b6
000276277 7001_ $$aPennington, Zachary$$b7
000276277 7001_ $$aCai, Denise$$b8
000276277 7001_ $$aMolina, Henrik$$b9
000276277 7001_ $$0P:(DE-2719)2811625$$aHenneberger, Christian$$b10$$udzne
000276277 7001_ $$00000-0001-7700-0891$$aAkbarian, Schahram$$b11
000276277 773__ $$0PERI:(DE-600)3094992-0$$a10.1016/j.bpsgos.2024.100432$$gVol. 5, no. 2, p. 100432 -$$n2$$p100432$$tBiological psychiatry: global open science$$v5$$x2667-1743$$y2025
000276277 8564_ $$uhttps://pub.dzne.de/record/276277/files/DZNE-2025-00256%20SUP.zip
000276277 8564_ $$uhttps://pub.dzne.de/record/276277/files/DZNE-2025-00256.pdf$$yOpenAccess
000276277 8564_ $$uhttps://pub.dzne.de/record/276277/files/DZNE-2025-00256.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276277 909CO $$ooai:pub.dzne.de:276277$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000276277 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811625$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000276277 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000276277 9141_ $$y2025
000276277 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-28
000276277 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000276277 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-11-10T08:42:22Z
000276277 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-11-10T08:42:22Z
000276277 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276277 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2022-11-10T08:42:22Z
000276277 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-28
000276277 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
000276277 9201_ $$0I:(DE-2719)1013029$$kAG Henneberger$$lSynaptic and Glial Plasticity$$x0
000276277 980__ $$ajournal
000276277 980__ $$aVDB
000276277 980__ $$aUNRESTRICTED
000276277 980__ $$aI:(DE-2719)1013029
000276277 9801_ $$aFullTexts