Home > Publications Database > Neurocan regulates axon initial segment organization and neuronal activity. > print |
001 | 276278 | ||
005 | 20250209000734.0 | ||
024 | 7 | _ | |a 10.1016/j.matbio.2025.01.001 |2 doi |
024 | 7 | _ | |a pmid:39788215 |2 pmid |
024 | 7 | _ | |a 0945-053X |2 ISSN |
024 | 7 | _ | |a 1569-1802 |2 ISSN |
024 | 7 | _ | |a altmetric:173241069 |2 altmetric |
037 | _ | _ | |a DZNE-2025-00257 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Baidoe-Ansah, David |0 P:(DE-2719)9001469 |b 0 |e First author |u dzne |
245 | _ | _ | |a Neurocan regulates axon initial segment organization and neuronal activity. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2025 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1738751716_16422 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability. Here, we used knockdown and knockout approaches in mouse primary cortical neurons in combination with immunocytochemistry, western blotting and electrophysiological techniques to characterize the role of Ncan in the organization of PNNs and AISs and the upregulation of neuronal activity. We found that reduced Ncan levels led to remodeling of PNNs around neurons via upregulation of Aggrecan mRNA and protein levels, increased expression of activity-dependent c-Fos and FosB genes and elevated spontaneous synaptic activity. The latter correlated with increased levels of Ankyrin-G in the AIS, particularly in excitatory neurons, and with the elevated expression of Nav1.6 channels. Our results suggest that Ncan regulates the expression of key proteins in PNNs and AISs and provide new insights into its role in fine-tuning neuronal functions. |
536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 0 |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 1 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a Extracellular matrix |2 Other |
650 | _ | 7 | |a neurocan |2 Other |
650 | _ | 7 | |a neuronal excitability |2 Other |
650 | _ | 7 | |a perineuronal net |2 Other |
650 | _ | 7 | |a synaptic plasticity |2 Other |
700 | 1 | _ | |a Mirzapourdelavar, Hadi |0 P:(DE-2719)2814120 |b 1 |u dzne |
700 | 1 | _ | |a Aleshin, Stepan |0 P:(DE-2719)9001621 |b 2 |u dzne |
700 | 1 | _ | |a Schott, Björn Hendrik |0 P:(DE-2719)2814326 |b 3 |u dzne |
700 | 1 | _ | |a Seidenbecher, Constanze |b 4 |
700 | 1 | _ | |a Kaushik, Rahul |b 5 |
700 | 1 | _ | |a Dityatev, Alexander |0 P:(DE-2719)2810577 |b 6 |e Last author |u dzne |
773 | _ | _ | |a 10.1016/j.matbio.2025.01.001 |g Vol. 136, p. 22 - 35 |0 PERI:(DE-600)2005263-7 |p 22 - 35 |t Matrix biology |v 136 |y 2025 |x 0945-053X |
856 | 4 | _ | |u https://pub.dzne.de/record/276278/files/DZNE-2025-00257%20SUP.docx |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/276278/files/DZNE-2025-00257.pdf |
856 | 4 | _ | |u https://pub.dzne.de/record/276278/files/DZNE-2025-00257%20SUP.doc |
856 | 4 | _ | |u https://pub.dzne.de/record/276278/files/DZNE-2025-00257%20SUP.odt |
856 | 4 | _ | |u https://pub.dzne.de/record/276278/files/DZNE-2025-00257%20SUP.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/276278/files/DZNE-2025-00257.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:276278 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001469 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 1 |6 P:(DE-2719)2814120 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9001621 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 3 |6 P:(DE-2719)2814326 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2810577 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 1 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b MATRIX BIOL : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-10 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b MATRIX BIOL : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2024-12-10 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
920 | 1 | _ | |0 I:(DE-2719)1310007 |k AG Dityatev |l Molecular Neuroplasticity |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1410002 |k AG Fischer |l Epigenetics and Systems Medicine in Neurodegenerative Diseases |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1310007 |
980 | _ | _ | |a I:(DE-2719)1410002 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|