000276344 001__ 276344
000276344 005__ 20250603100721.0
000276344 0247_ $$2doi$$a10.1002/mrm.30368
000276344 0247_ $$2pmid$$apmid:39568225
000276344 0247_ $$2pmc$$apmc:PMC11782714
000276344 0247_ $$2ISSN$$a1522-2594
000276344 0247_ $$2ISSN$$a0740-3194
000276344 0247_ $$2altmetric$$aaltmetric:171655164
000276344 037__ $$aDZNE-2025-00292
000276344 041__ $$aEnglish
000276344 082__ $$a610
000276344 1001_ $$0P:(DE-2719)9001302$$aBlömer, Simon$$b0$$eFirst author
000276344 245__ $$aProton-free induction decay MRSI at 7 T in the human brain using an egg-shaped modified rosette K-space trajectory.
000276344 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000276344 3367_ $$2DRIVER$$aarticle
000276344 3367_ $$2DataCite$$aOutput Types/Journal article
000276344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748936611_11720
000276344 3367_ $$2BibTeX$$aARTICLE
000276344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276344 3367_ $$00$$2EndNote$$aJournal Article
000276344 520__ $$aProton (1H)-MRSI via spatial-spectral encoding poses high demands on gradient hardware at ultra-high fields and high-resolutions. Rosette trajectories help alleviate these problems, but at reduced SNR-efficiency because of their k-space densities not matching any desired k-space filter. We propose modified rosette trajectories, which more closely match a Hamming filter, and thereby improve SNR performance while still staying within gradient hardware limitations and without prolonging scan time.Analytical and synthetic simulations were validated with phantom and in vivo measurements at 7 T. The rosette and modified rosette trajectories were measured in five healthy volunteers in 6 min in a 2D slice in the brain. An elliptical phase-encoding sequence was measured in one volunteer in 22 min, and a 3D sequence was measured in one volunteer within 19 min. The SNR per-unit-time, linewidth, Cramer-Rao lower bounds (CRLBs), lipid contamination, and data quality of the proposed modified rosette trajectory were compared to the rosette trajectory.Using the modified rosette trajectories, an improved k-space weighting function was achieved resulting in an SNR per-unit-time increase of up to 12% compared to rosette's and 23% compared to elliptical phase-encoding, dependent on the two additional trajectory parameters. Similar results were achieved for the theoretical SNR calculation based on k-space densities, as well as when using the pseudo-replica method for simulated, in vivo, and phantom data. The CRLBs of γ-aminobutyric acid and N-acetylaspartylglutamate improved non-significantly for the modified rosette trajectory, whereas the linewidths and lipid contamination remained similar.By optimizing the shape of the rosette trajectory, the modified rosette trajectories achieved higher SNR per-unit-time and enhanced data quality at the same scan time.
000276344 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000276344 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000276344 650_7 $$2Other$$a7 T
000276344 650_7 $$2Other$$aSNR efficiency
000276344 650_7 $$2Other$$agradient hardware restrictions
000276344 650_7 $$2Other$$amagnetic resonance spectroscopic imaging
000276344 650_7 $$2Other$$amodified rosette trajectory
000276344 650_7 $$2Other$$anon‐Cartesian trajectory
000276344 650_7 $$2NLM Chemicals$$aProtons
000276344 650_2 $$2MeSH$$aHumans
000276344 650_2 $$2MeSH$$aPhantoms, Imaging
000276344 650_2 $$2MeSH$$aBrain: diagnostic imaging
000276344 650_2 $$2MeSH$$aAlgorithms
000276344 650_2 $$2MeSH$$aSignal-To-Noise Ratio
000276344 650_2 $$2MeSH$$aAdult
000276344 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000276344 650_2 $$2MeSH$$aProtons
000276344 650_2 $$2MeSH$$aComputer Simulation
000276344 650_2 $$2MeSH$$aMale
000276344 650_2 $$2MeSH$$aReproducibility of Results
000276344 650_2 $$2MeSH$$aFemale
000276344 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000276344 650_2 $$2MeSH$$aHealthy Volunteers
000276344 7001_ $$aHingerl, Lukas$$b1
000276344 7001_ $$00000-0002-4727-2447$$aMarjańska, Małgorzata$$b2
000276344 7001_ $$aBogner, Wolfgang$$b3
000276344 7001_ $$00000-0002-6314-316X$$aMotyka, Stanislav$$b4
000276344 7001_ $$aHangel, Gilbert$$b5
000276344 7001_ $$aKlauser, Antoine$$b6
000276344 7001_ $$00000-0002-7412-0641$$aAndronesi, Ovidiu C$$b7
000276344 7001_ $$aStrasser, Bernhard$$b8
000276344 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30368$$gVol. 93, no. 4, p. 1443 - 1457$$n4$$p1443 - 1457$$tMagnetic resonance in medicine$$v93$$x1522-2594$$y2025
000276344 8564_ $$uhttps://pub.dzne.de/record/276344/files/DZNE-2025-00292%20SUP.doc
000276344 8564_ $$uhttps://pub.dzne.de/record/276344/files/DZNE-2025-00292%20SUP.docx
000276344 8564_ $$uhttps://pub.dzne.de/record/276344/files/DZNE-2025-00292%20SUP.odt
000276344 8564_ $$uhttps://pub.dzne.de/record/276344/files/DZNE-2025-00292%20SUP.pdf
000276344 8564_ $$uhttps://pub.dzne.de/record/276344/files/DZNE-2025-00292.pdf$$yOpenAccess
000276344 8564_ $$uhttps://pub.dzne.de/record/276344/files/DZNE-2025-00292.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276344 909CO $$ooai:pub.dzne.de:276344$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000276344 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001302$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000276344 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000276344 9141_ $$y2025
000276344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000276344 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000276344 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000276344 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000276344 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000276344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000276344 9201_ $$0I:(DE-2719)1011101$$kPatient Studies (Bonn)$$lPatient Studies (Bonn)$$x0
000276344 980__ $$ajournal
000276344 980__ $$aVDB
000276344 980__ $$aI:(DE-2719)1011101
000276344 980__ $$aUNRESTRICTED
000276344 9801_ $$aFullTexts