Home > Publications Database > Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. > print |
001 | 276481 | ||
005 | 20250216000757.0 | ||
024 | 7 | _ | |a 10.26508/lsa.202402956 |2 doi |
024 | 7 | _ | |a pmid:39909558 |2 pmid |
024 | 7 | _ | |a altmetric:173899938 |2 altmetric |
037 | _ | _ | |a DZNE-2025-00300 |
041 | _ | _ | |a English |
082 | _ | _ | |a 570 |
100 | 1 | _ | |a Beckröge, Tobias |b 0 |
245 | _ | _ | |a Impaired primitive erythropoiesis and defective vascular development in Trim71-KO embryos. |
260 | _ | _ | |a Heidelberg |c 2025 |b EMBO Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1739438770_23637 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The transition of an embryo from gastrulation to organogenesis requires precisely coordinated changes in gene expression, but the underlying mechanisms remain unclear. The RNA-binding protein Trim71 is essential for development and serves as a potent regulator of post-transcriptional gene expression. Here, we show that global deficiency of Trim71 induces severe defects in mesoderm-derived cells at the onset of organogenesis. Murine Trim71-KO embryos displayed impaired primitive erythropoiesis, yolk sac vasculature, heart function, and circulation, explaining the embryonic lethality of these mice. Tie2 Cre Trim71 conditional knockout did not induce strong defects, showing that Trim71 expression in endothelial cells and their immediate progenitors is dispensable for embryonic survival. scRNA-seq of E7.5 global Trim71-KO embryos revealed that transcriptomic changes arise already at gastrulation, showing a strong up-regulation of the mesodermal pioneer transcription factor Eomes. We identify Eomes as a direct target of Trim71-mediated mRNA repression via the NHL domain, demonstrating a functional link between these important regulatory genes. Taken together, our data suggest that Trim71-dependent control of gene expression at gastrulation establishes a framework for proper development during organogenesis. |
536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 0 |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 1 |
536 | _ | _ | |a 351 - Brain Function (POF4-351) |0 G:(DE-HGF)POF4-351 |c POF4-351 |f POF IV |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a T-Box Domain Proteins |2 NLM Chemicals |
650 | _ | 7 | |a RNA-Binding Proteins |2 NLM Chemicals |
650 | _ | 2 | |a Animals |2 MeSH |
650 | _ | 2 | |a Erythropoiesis: genetics |2 MeSH |
650 | _ | 2 | |a Mice |2 MeSH |
650 | _ | 2 | |a Mice, Knockout |2 MeSH |
650 | _ | 2 | |a Gene Expression Regulation, Developmental: genetics |2 MeSH |
650 | _ | 2 | |a Embryo, Mammalian: metabolism |2 MeSH |
650 | _ | 2 | |a Organogenesis: genetics |2 MeSH |
650 | _ | 2 | |a Yolk Sac: metabolism |2 MeSH |
650 | _ | 2 | |a Yolk Sac: blood supply |2 MeSH |
650 | _ | 2 | |a Yolk Sac: embryology |2 MeSH |
650 | _ | 2 | |a T-Box Domain Proteins: genetics |2 MeSH |
650 | _ | 2 | |a T-Box Domain Proteins: metabolism |2 MeSH |
650 | _ | 2 | |a Gastrulation: genetics |2 MeSH |
650 | _ | 2 | |a Endothelial Cells: metabolism |2 MeSH |
650 | _ | 2 | |a Female |2 MeSH |
650 | _ | 2 | |a RNA-Binding Proteins: metabolism |2 MeSH |
650 | _ | 2 | |a RNA-Binding Proteins: genetics |2 MeSH |
650 | _ | 2 | |a Mesoderm: metabolism |2 MeSH |
650 | _ | 2 | |a Mesoderm: embryology |2 MeSH |
700 | 1 | _ | |a Jux, Bettina |b 1 |
700 | 1 | _ | |a Seifert, Hannah |b 2 |
700 | 1 | _ | |a Theobald, Hannah |b 3 |
700 | 1 | _ | |a De Domenico, Elena |0 P:(DE-2719)9000846 |b 4 |
700 | 1 | _ | |a Paulusch, Stefan |0 P:(DE-2719)9002116 |b 5 |u dzne |
700 | 1 | _ | |a Beyer, Marc |0 P:(DE-2719)2812219 |b 6 |u dzne |
700 | 1 | _ | |a Schlitzer, Andreas |0 P:(DE-2719)2813805 |b 7 |
700 | 1 | _ | |a Mass, Elvira |b 8 |
700 | 1 | _ | |a Kolanus, Waldemar |0 0000-0003-1325-9444 |b 9 |
773 | _ | _ | |a 10.26508/lsa.202402956 |g Vol. 8, no. 4, p. e202402956 - |0 PERI:(DE-600)2948687-7 |n 4 |p e202402956 |t Life science alliance |v 8 |y 2025 |x 2575-1077 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/276481/files/DZNE-2025-00300.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/276481/files/DZNE-2025-00300.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:276481 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)9000846 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 5 |6 P:(DE-2719)9002116 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 6 |6 P:(DE-2719)2812219 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 0 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 1 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-351 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Brain Function |x 2 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-10 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LIFE SCI ALLIANCE : 2022 |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-02-08T19:01:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-02-08T19:01:09Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-10 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-10 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-10 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2022-02-08T19:01:09Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
920 | 1 | _ | |0 I:(DE-2719)1013038 |k AG Schultze |l Clinical Single Cell Omics (CSCO) / Systems Medicine |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1013031 |k PRECISE |l Platform for Single Cell Genomics and Epigenomics |x 1 |
920 | 1 | _ | |0 I:(DE-2719)1013035 |k AG Beyer |l Immunogenomics and Neurodegeneration |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1013038 |
980 | _ | _ | |a I:(DE-2719)1013031 |
980 | _ | _ | |a I:(DE-2719)1013035 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|