000276783 001__ 276783
000276783 005__ 20250318091450.0
000276783 0247_ $$2doi$$a10.1007/s10858-024-00452-9
000276783 0247_ $$2pmid$$apmid:39643821
000276783 0247_ $$2ISSN$$a0925-2738
000276783 0247_ $$2ISSN$$a1573-5001
000276783 037__ $$aDZNE-2025-00320
000276783 041__ $$aEnglish
000276783 082__ $$a570
000276783 1001_ $$aPutko, Paulina$$b0
000276783 245__ $$aUsing temperature coefficients to support resonance assignment of intrinsically disordered proteins.
000276783 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2025
000276783 3367_ $$2DRIVER$$aarticle
000276783 3367_ $$2DataCite$$aOutput Types/Journal article
000276783 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1739954066_13942
000276783 3367_ $$2BibTeX$$aARTICLE
000276783 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276783 3367_ $$00$$2EndNote$$aJournal Article
000276783 520__ $$aThe resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on H N , N, C α and C ' data. Moreover, adding TCs to CSs of H N , N, C α , and C ' is more beneficial than adding C β CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .
000276783 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000276783 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000276783 650_7 $$2Other$$aIntrinsically disordered proteins
000276783 650_7 $$2Other$$aTau protein
000276783 650_7 $$2Other$$aTemperature coefficients
000276783 650_7 $$2NLM Chemicals$$aIntrinsically Disordered Proteins
000276783 650_2 $$2MeSH$$aIntrinsically Disordered Proteins: chemistry
000276783 650_2 $$2MeSH$$aNuclear Magnetic Resonance, Biomolecular: methods
000276783 650_2 $$2MeSH$$aTemperature
000276783 650_2 $$2MeSH$$aDiscriminant Analysis
000276783 7001_ $$aRomero, Javier Agustin$$b1
000276783 7001_ $$0P:(DE-2719)2812808$$aPantoja, Christian F$$b2$$udzne
000276783 7001_ $$0P:(DE-2719)2810591$$aZweckstetter, Markus$$b3$$udzne
000276783 7001_ $$aKazimierczuk, Krzysztof$$b4
000276783 7001_ $$aZawadzka-Kazimierczuk, Anna$$b5
000276783 773__ $$0PERI:(DE-600)2006645-4$$a10.1007/s10858-024-00452-9$$gVol. 79, no. 1, p. 59 - 65$$n1$$p59 - 65$$tJournal of biomolecular NMR$$v79$$x0925-2738$$y2025
000276783 8564_ $$uhttps://pub.dzne.de/record/276783/files/DZNE-2025-00320.pdf$$yOpenAccess
000276783 8564_ $$uhttps://pub.dzne.de/record/276783/files/DZNE-2025-00320.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000276783 909CO $$ooai:pub.dzne.de:276783$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000276783 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812808$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000276783 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810591$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000276783 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000276783 9141_ $$y2025
000276783 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-27
000276783 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000276783 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2024-12-27$$wger
000276783 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000276783 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ BIOMOL NMR : 2022$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27
000276783 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-27$$wger
000276783 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27
000276783 9201_ $$0I:(DE-2719)1410001$$kAG Zweckstetter$$lTranslational Structural Biology$$x0
000276783 980__ $$ajournal
000276783 980__ $$aVDB
000276783 980__ $$aUNRESTRICTED
000276783 980__ $$aI:(DE-2719)1410001
000276783 9801_ $$aFullTexts