001     276783
005     20250318091450.0
024 7 _ |a 10.1007/s10858-024-00452-9
|2 doi
024 7 _ |a pmid:39643821
|2 pmid
024 7 _ |a 0925-2738
|2 ISSN
024 7 _ |a 1573-5001
|2 ISSN
037 _ _ |a DZNE-2025-00320
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Putko, Paulina
|b 0
245 _ _ |a Using temperature coefficients to support resonance assignment of intrinsically disordered proteins.
260 _ _ |a Dordrecht [u.a.]
|c 2025
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1739954066_13942
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The resonance assignment of large intrinsically disordered proteins (IDPs) is difficult due to the low dispersion of chemical shifts (CSs). Luckily, CSs are often specific for certain residue types, which makes the task easier. Our recent work showed that the CS-based spin-system classification can be improved by applying a linear discriminant analysis (LDA). In this paper, we extend a set of classification parameters by adding temperature coefficients (TCs), i.e., rates of change of chemical shifts with temperature. As demonstrated previously by other groups, the TCs in IDPs depend on a residue type, although the relation is often too complex to be predicted theoretically. Thus, we propose an approach based on experimental data; CSs and TCs values of residues assigned using conventional methods serve as a training set for LDA, which then classifies the remaining resonances. The method is demonstrated on a large fragment (1-239) of highly disordered protein Tau. We noticed that adding TCs to sets of chemical shifts significantly improves the recognition efficiency. For example, it allows distinguishing between lysine and glutamic acid, as well as valine and isoleucine residues based on H N , N, C α and C ' data. Moreover, adding TCs to CSs of H N , N, C α , and C ' is more beneficial than adding C β CSs. Our program for LDA analysis is available at https://github.com/gugumatz/LDA-Temp-Coeff .
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Intrinsically disordered proteins
|2 Other
650 _ 7 |a Tau protein
|2 Other
650 _ 7 |a Temperature coefficients
|2 Other
650 _ 7 |a Intrinsically Disordered Proteins
|2 NLM Chemicals
650 _ 2 |a Intrinsically Disordered Proteins: chemistry
|2 MeSH
650 _ 2 |a Nuclear Magnetic Resonance, Biomolecular: methods
|2 MeSH
650 _ 2 |a Temperature
|2 MeSH
650 _ 2 |a Discriminant Analysis
|2 MeSH
700 1 _ |a Romero, Javier Agustin
|b 1
700 1 _ |a Pantoja, Christian F
|0 P:(DE-2719)2812808
|b 2
|u dzne
700 1 _ |a Zweckstetter, Markus
|0 P:(DE-2719)2810591
|b 3
|u dzne
700 1 _ |a Kazimierczuk, Krzysztof
|b 4
700 1 _ |a Zawadzka-Kazimierczuk, Anna
|b 5
773 _ _ |a 10.1007/s10858-024-00452-9
|g Vol. 79, no. 1, p. 59 - 65
|0 PERI:(DE-600)2006645-4
|n 1
|p 59 - 65
|t Journal of biomolecular NMR
|v 79
|y 2025
|x 0925-2738
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/276783/files/DZNE-2025-00320.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/276783/files/DZNE-2025-00320.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:276783
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812808
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810591
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-27
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOMOL NMR : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-2719)1410001
|k AG Zweckstetter
|l Translational Structural Biology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21