001     276803
005     20250323000850.0
024 7 _ |a 10.1186/s12904-025-01672-y
|2 doi
024 7 _ |a pmid:39966759
|2 pmid
024 7 _ |a altmetric:174655951
|2 altmetric
037 _ _ |a DZNE-2025-00328
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rakuša, Elena
|0 P:(DE-2719)9001401
|b 0
|e First author
|u dzne
245 _ _ |a Dementia as a predictor of palliative care: Uncovering patient patterns based on German claims data.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740040025_2407
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Palliative care aims to ensure a dignified and self-determined life for people facing the end of life. While palliative care is established for tumor diseases, it's notably absent from German medical guidelines for other progressive diseases with an unfavorable prognosis such as dementia. This study will identify predictors of palliative care use in older patients and explore how these predictors relate to the probability of palliative care.We used data from the largest German health insurance company of people over 50 years of age from the period 2014-2019. The analysis focused on the last year of life. Outcomes were outpatient and inpatient palliative care and predictors were demographics, comorbidities, therapeutic remedies and rehabilitation, care and medical interventions, medication and patient group. Combined logistic regression models and discrete conditional inference survival forests were used to predict the utilization of outpatient and inpatient palliative care. For evaluation we used concordance-index and calibration plots. We identified the most important predictors by using a permutation approach and the log-loss metric.The study cohort for the analysis of inpatient palliative care comprised 43,896 patients, while the cohort for the analysis of outpatient palliative care included a total of 37,430 patients. The models had appropriate discriminatory power (inpatient palliative care: concordance-index = 0.737 (95%CI = 0.721-0.754); outpatient palliative care: concordance-index = 0.689; 95%CI = 0.675-0.704) and showed appropriate calibration. A diagnosis of dementia, like a diagnosis of cancer, is predictive of inpatient palliative care and outpatient palliative care. We observed a lower probability for inpatient and for outpatient palliative care for dementia patients compared to cancer patients.The findings highlight the need to focus palliative care on other patient groups besides cancer patients, such as dementia patients, and to facilitate access for all patients.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Dementia
|2 Other
650 _ 7 |a End-of-life
|2 Other
650 _ 7 |a Machine learning
|2 Other
650 _ 7 |a Palliative care
|2 Other
650 _ 7 |a Predictions
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Palliative Care: methods
|2 MeSH
650 _ 2 |a Palliative Care: statistics & numerical data
|2 MeSH
650 _ 2 |a Palliative Care: standards
|2 MeSH
650 _ 2 |a Germany
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Dementia: therapy
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Insurance Claim Review: statistics & numerical data
|2 MeSH
700 1 _ |a Reinke, Constantin
|b 1
700 1 _ |a Doblhammer, Gabriele
|0 P:(DE-2719)2811246
|b 2
|u dzne
700 1 _ |a Radbruch, Lukas
|b 3
700 1 _ |a Schmid, Matthias
|0 P:(DE-2719)2811245
|b 4
|u dzne
700 1 _ |a Welchowski, Thomas
|b 5
773 _ _ |a 10.1186/s12904-025-01672-y
|g Vol. 24, no. 1, p. 46
|0 PERI:(DE-600)2091556-1
|n 1
|p 46
|t BMC palliative care
|v 24
|y 2025
|x 1472-684X
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/276803/files/DZNE-2025-00328.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/276803/files/DZNE-2025-00328.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:276803
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001401
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2811246
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811245
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-09
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BMC PALLIAT CARE : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:34:51Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:34:51Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 1 _ |0 I:(DE-2719)1012002
|k AG Doblhammer
|l Demographic Studies
|x 0
920 1 _ |0 I:(DE-2719)1013028
|k AG Schmid Bonn
|l Mathematics, statistics and informatics methods for support of population studies and clinical research
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1012002
980 _ _ |a I:(DE-2719)1013028
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21