001     276805
005     20250323000852.0
024 7 _ |a 10.1186/s13195-025-01680-3
|2 doi
024 7 _ |a pmid:39972463
|2 pmid
024 7 _ |a altmetric:175173299
|2 altmetric
037 _ _ |a DZNE-2025-00330
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Trambauer, Johannes
|0 P:(DE-2719)9000969
|b 0
|e First author
|u dzne
245 _ _ |a γ-Secretase modulator resistance of an aggressive Alzheimer-causing presenilin mutant can be overcome in the heterozygous patient state by a set of advanced compounds.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741615152_15545
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Amyloid-β peptide (Aβ) species of 42 or 43 amino acids in length (Aβ42/43) trigger Alzheimer´s disease (AD) and are produced in abnormal amounts by mutants of the γ-secretase subunit presenilin-1 (PS1), which represent the primary cause of familial AD (FAD). Lowering these peptides by γ-secretase modulators (GSMs) is increasingly considered a safe strategy to treat AD since these compounds do not affect the overall cleavage of γ-secretase substrates. GSMs were shown to modulate not only wild-type (WT) γ-secretase but also FAD mutants, expanding their potential use also to the familial form of the disease. Unlike most other FAD mutants, the very aggressive PS1 L166P mutant is largely resistant to GSMs. However, these data were mostly obtained from overexpression models, which mimic more the less relevant homozygous state rather than the heterozygous patient situation.Mouse embryonic fibroblast and induced pluripotent stem cell-derived neuronal PS1 L166P knock-in (KI) cell models were treated with various GSMs and Aβ responses were assessed by immunoassays and/or gel-based analysis.We identified GSMs that lower Aβ42 and/or Aβ43 when PS1 L166P is heterozygous, as it is the case in affected patients, and could reduce the amount of pathogenic Aβ species towards WT levels. RO7019009 was the most potent of these compounds, reducing both pathogenic species and concomitantly increasing the short Aβ37 and Aβ38, of which the latter has been associated with delayed AD progression. Another effective compound, the structurally novel indole-type GSM RO5254601 specifically acts on the Aβ42 product line leading to a selective increase of the beneficial Aβ38. Interestingly, we further found that this class of GSMs can bind not only one, but both presenilin fragments suggesting that it targets γ-secretase at an unusual binding site.Our data show that even highly refractory presenilin FAD mutants are in principle tractable with GSMs extending the possibilities for potential clinical studies in FAD with suitable GSM molecules.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a
|2 Other
650 _ 7 |a Familial Alzheimer’s disease
|2 Other
650 _ 7 |a Presenilin
|2 Other
650 _ 7 |a γ-Secretase modulator
|2 Other
650 _ 7 |a Amyloid Precursor Protein Secretases
|0 EC 3.4.-
|2 NLM Chemicals
650 _ 7 |a Presenilin-1
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a Peptide Fragments
|2 NLM Chemicals
650 _ 7 |a PSEN1 protein, human
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: metabolism
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: genetics
|2 MeSH
650 _ 2 |a Alzheimer Disease: genetics
|2 MeSH
650 _ 2 |a Alzheimer Disease: drug therapy
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Presenilin-1: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: metabolism
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides: genetics
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Heterozygote
|2 MeSH
650 _ 2 |a Peptide Fragments: metabolism
|2 MeSH
650 _ 2 |a Peptide Fragments: genetics
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: drug effects
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
700 1 _ |a Sarmiento, Rosa Maria Rodriguez
|b 1
700 1 _ |a Garringer, Holly J
|b 2
700 1 _ |a Salbaum, Katja
|b 3
700 1 _ |a Pedro, Liliana Domingues
|0 P:(DE-2719)2812527
|b 4
700 1 _ |a Crusius, Dennis
|b 5
700 1 _ |a Vidal, Ruben
|b 6
700 1 _ |a Ghetti, Bernardino
|b 7
700 1 _ |a Paquet, Dominik
|b 8
700 1 _ |a Baumann, Karlheinz
|b 9
700 1 _ |a Lindemann, Lothar
|b 10
700 1 _ |a Steiner, Harald
|0 P:(DE-2719)2000023
|b 11
|e Last author
|u dzne
773 _ _ |a 10.1186/s13195-025-01680-3
|g Vol. 17, no. 1, p. 49
|0 PERI:(DE-600)2506521-X
|n 1
|p 49
|t Alzheimer's research & therapy
|v 17
|y 2025
|x 1758-9193
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/276805/files/DZNE-2025-00330.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/276805/files/DZNE-2025-00330.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:276805
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000969
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812527
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2000023
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ALZHEIMERS RES THER : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:32:54Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:32:54Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ALZHEIMERS RES THER : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-2719)1110000-1
|k AG Steiner
|l Biochemistry of γ-Secretase
|x 0
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110000-1
980 _ _ |a I:(DE-2719)1110008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21