000276820 001__ 276820
000276820 005__ 20250522170631.0
000276820 0247_ $$2doi$$a10.1212/WNL.0000000000210278
000276820 0247_ $$2pmid$$apmid:39977717
000276820 0247_ $$2ISSN$$a0028-3878
000276820 0247_ $$2ISSN$$a1526-632X
000276820 037__ $$aDZNE-2025-00333
000276820 041__ $$aEnglish
000276820 082__ $$a610
000276820 1001_ $$0P:(DE-2719)2812615$$aCoors, Annabell$$b0$$eFirst author
000276820 245__ $$aAssociations of Plasma Neurofilament Light Levels With Brain Microstructure and Macrostructure and Cognition in the Community-Based Rhineland Study.
000276820 260__ $$aPhiladelphia, Pa.$$bWolters Kluwer$$c2025
000276820 3367_ $$2DRIVER$$aarticle
000276820 3367_ $$2DataCite$$aOutput Types/Journal article
000276820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747926378_19988
000276820 3367_ $$2BibTeX$$aARTICLE
000276820 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000276820 3367_ $$00$$2EndNote$$aJournal Article
000276820 520__ $$aPlasma neurofilament light chain (NfL) level is a sensitive yet aspecific marker of neurodegeneration. Its neuroanatomical and functional correlates in the general population are not fully elucidated. We thus assessed how brain's macrostructures and microstructures and cognitive function are related to plasma NfL levels in cognitively unimpaired adults over a wide age range.Our analyses were based on cross-sectional data from the Rhineland Study, a community-based prospective cohort study. This study includes people from the age of 30 onwards who live in 2 geographically defined areas in Bonn, Germany, and have sufficient command of the German language. Plasma NfL levels were measured using the Simoa platform and then log-transformed and adjusted for plate position, batch number, and Analyzer (HD-1 or HD-X). Brain imaging data were collected on a 3 Tesla scanner and included volumetric measures, metrics of the diffusion tensor and the neurite orientation dispersion and density imaging model, and white matter hyperintensity load. Memory performance, processing speed, and executive function were assessed using traditional cognitive tasks and an eye movement battery. We used multivariable regression models to assess the relations between brain structure and plasma NfL levels and between plasma NfL levels and cognitive performance.The study sample consisted of 5,589 participants aged 30-95 years (mean age 55 ± 13.7 years, 56.1% women) without neurodegenerative diseases. Higher plasma NfL levels were associated with lower isotropic volume fraction (-0.030; 95% CI -0.051 to -0.010; pFDR = 0.011), lower neurite density index (ß = -0.031; 95% CI -0.053 to -0.008; pFDR = 0.014), and higher axial diffusivity (ß = 0.037; 95% CI 0.013-0.062; p = 0.005; pFDR = 0.011). The strongest association was with the orientation dispersion index (ß = -0.063; 95% CI -0.085 to -0.041; pFDR < 0.001). Furthermore, higher plasma NfL levels tended to be associated with a lower processing speed domain score (ß = -0.046; 95% CI -0.084 to -0.009; p = 0.014; pFDR = 0.056) and longer prosaccade latency (ß = 0.039; 95% CI 0.000-0.078; p = 0.049; pFDR = 0.480).Higher plasma NfL levels mainly reflect worse white matter microstructural integrity, especially lower axonal density, in a relatively healthy, community-based sample. This suggests that plasma NfL levels allow for early detection of subtle differences in brain microstructure.
000276820 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000276820 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000276820 650_7 $$2NLM Chemicals$$aNeurofilament Proteins
000276820 650_7 $$2NLM Chemicals$$aneurofilament protein L
000276820 650_7 $$2NLM Chemicals$$aBiomarkers
000276820 650_2 $$2MeSH$$aHumans
000276820 650_2 $$2MeSH$$aMale
000276820 650_2 $$2MeSH$$aFemale
000276820 650_2 $$2MeSH$$aMiddle Aged
000276820 650_2 $$2MeSH$$aNeurofilament Proteins: blood
000276820 650_2 $$2MeSH$$aAged
000276820 650_2 $$2MeSH$$aCognition: physiology
000276820 650_2 $$2MeSH$$aCross-Sectional Studies
000276820 650_2 $$2MeSH$$aBrain: diagnostic imaging
000276820 650_2 $$2MeSH$$aAdult
000276820 650_2 $$2MeSH$$aAged, 80 and over
000276820 650_2 $$2MeSH$$aGermany
000276820 650_2 $$2MeSH$$aProspective Studies
000276820 650_2 $$2MeSH$$aNeuropsychological Tests
000276820 650_2 $$2MeSH$$aWhite Matter: diagnostic imaging
000276820 650_2 $$2MeSH$$aWhite Matter: pathology
000276820 650_2 $$2MeSH$$aCohort Studies
000276820 650_2 $$2MeSH$$aBiomarkers: blood
000276820 693__ $$0EXP:(DE-2719)Rhineland Study-20190321$$5EXP:(DE-2719)Rhineland Study-20190321$$eRhineland Study / Bonn$$x0
000276820 7001_ $$0P:(DE-2719)2811413$$aBönniger, Meta-Miriam$$b1$$udzne
000276820 7001_ $$0P:(DE-2719)9000737$$aSantos, Marina$$b2
000276820 7001_ $$0P:(DE-2719)2811856$$aLohner, Valerie$$b3
000276820 7001_ $$0P:(DE-2719)2810822$$aKoch, Alexandra$$b4$$udzne
000276820 7001_ $$aEttinger, Ulrich$$b5
000276820 7001_ $$0P:(DE-2719)2812578$$aAziz, N Ahmad$$b6
000276820 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M B$$b7$$eLast author
000276820 773__ $$0PERI:(DE-600)1491874-2$$a10.1212/WNL.0000000000210278$$gVol. 104, no. 6, p. e210278$$n6$$pe210278$$tNeurology$$v104$$x0028-3878$$y2025
000276820 909CO $$ooai:pub.dzne.de:276820$$pVDB
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812615$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811413$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000737$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811856$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810822$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812578$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000276820 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000276820 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000276820 9141_ $$y2025
000276820 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2025-01-02$$wger
000276820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROLOGY : 2022$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000276820 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROLOGY : 2022$$d2025-01-02
000276820 9201_ $$0I:(DE-2719)1012001$$kAG Breteler$$lPopulation Health Sciences$$x0
000276820 9201_ $$0I:(DE-2719)5000071$$kAG Aziz$$lPopulation & Clinical Neuroepidemiology$$x1
000276820 980__ $$ajournal
000276820 980__ $$aVDB
000276820 980__ $$aI:(DE-2719)1012001
000276820 980__ $$aI:(DE-2719)5000071
000276820 980__ $$aUNRESTRICTED