001     276820
005     20250522170631.0
024 7 _ |a 10.1212/WNL.0000000000210278
|2 doi
024 7 _ |a pmid:39977717
|2 pmid
024 7 _ |a 0028-3878
|2 ISSN
024 7 _ |a 1526-632X
|2 ISSN
037 _ _ |a DZNE-2025-00333
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Coors, Annabell
|0 P:(DE-2719)2812615
|b 0
|e First author
245 _ _ |a Associations of Plasma Neurofilament Light Levels With Brain Microstructure and Macrostructure and Cognition in the Community-Based Rhineland Study.
260 _ _ |a Philadelphia, Pa.
|c 2025
|b Wolters Kluwer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1747926378_19988
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plasma neurofilament light chain (NfL) level is a sensitive yet aspecific marker of neurodegeneration. Its neuroanatomical and functional correlates in the general population are not fully elucidated. We thus assessed how brain's macrostructures and microstructures and cognitive function are related to plasma NfL levels in cognitively unimpaired adults over a wide age range.Our analyses were based on cross-sectional data from the Rhineland Study, a community-based prospective cohort study. This study includes people from the age of 30 onwards who live in 2 geographically defined areas in Bonn, Germany, and have sufficient command of the German language. Plasma NfL levels were measured using the Simoa platform and then log-transformed and adjusted for plate position, batch number, and Analyzer (HD-1 or HD-X). Brain imaging data were collected on a 3 Tesla scanner and included volumetric measures, metrics of the diffusion tensor and the neurite orientation dispersion and density imaging model, and white matter hyperintensity load. Memory performance, processing speed, and executive function were assessed using traditional cognitive tasks and an eye movement battery. We used multivariable regression models to assess the relations between brain structure and plasma NfL levels and between plasma NfL levels and cognitive performance.The study sample consisted of 5,589 participants aged 30-95 years (mean age 55 ± 13.7 years, 56.1% women) without neurodegenerative diseases. Higher plasma NfL levels were associated with lower isotropic volume fraction (-0.030; 95% CI -0.051 to -0.010; pFDR = 0.011), lower neurite density index (ß = -0.031; 95% CI -0.053 to -0.008; pFDR = 0.014), and higher axial diffusivity (ß = 0.037; 95% CI 0.013-0.062; p = 0.005; pFDR = 0.011). The strongest association was with the orientation dispersion index (ß = -0.063; 95% CI -0.085 to -0.041; pFDR < 0.001). Furthermore, higher plasma NfL levels tended to be associated with a lower processing speed domain score (ß = -0.046; 95% CI -0.084 to -0.009; p = 0.014; pFDR = 0.056) and longer prosaccade latency (ß = 0.039; 95% CI 0.000-0.078; p = 0.049; pFDR = 0.480).Higher plasma NfL levels mainly reflect worse white matter microstructural integrity, especially lower axonal density, in a relatively healthy, community-based sample. This suggests that plasma NfL levels allow for early detection of subtle differences in brain microstructure.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Neurofilament Proteins
|2 NLM Chemicals
650 _ 7 |a neurofilament protein L
|2 NLM Chemicals
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Neurofilament Proteins: blood
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Cognition: physiology
|2 MeSH
650 _ 2 |a Cross-Sectional Studies
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Aged, 80 and over
|2 MeSH
650 _ 2 |a Germany
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Neuropsychological Tests
|2 MeSH
650 _ 2 |a White Matter: diagnostic imaging
|2 MeSH
650 _ 2 |a White Matter: pathology
|2 MeSH
650 _ 2 |a Cohort Studies
|2 MeSH
650 _ 2 |a Biomarkers: blood
|2 MeSH
693 _ _ |0 EXP:(DE-2719)Rhineland Study-20190321
|5 EXP:(DE-2719)Rhineland Study-20190321
|e Rhineland Study / Bonn
|x 0
700 1 _ |a Bönniger, Meta-Miriam
|0 P:(DE-2719)2811413
|b 1
|u dzne
700 1 _ |a Santos, Marina
|0 P:(DE-2719)9000737
|b 2
700 1 _ |a Lohner, Valerie
|0 P:(DE-2719)2811856
|b 3
700 1 _ |a Koch, Alexandra
|0 P:(DE-2719)2810822
|b 4
|u dzne
700 1 _ |a Ettinger, Ulrich
|b 5
700 1 _ |a Aziz, N Ahmad
|0 P:(DE-2719)2812578
|b 6
700 1 _ |a Breteler, Monique M B
|0 P:(DE-2719)2810403
|b 7
|e Last author
773 _ _ |a 10.1212/WNL.0000000000210278
|g Vol. 104, no. 6, p. e210278
|0 PERI:(DE-600)1491874-2
|n 6
|p e210278
|t Neurology
|v 104
|y 2025
|x 0028-3878
909 C O |p VDB
|o oai:pub.dzne.de:276820
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2812615
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811413
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000737
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811856
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2810822
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812578
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810403
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2025
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2025-01-02
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROLOGY : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROLOGY : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler
|l Population Health Sciences
|x 0
920 1 _ |0 I:(DE-2719)5000071
|k AG Aziz
|l Population & Clinical Neuroepidemiology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a I:(DE-2719)5000071
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21