001     277313
005     20250323000912.0
024 7 _ |a 10.1038/s42255-024-01196-4
|2 doi
024 7 _ |a pmid:39815080
|2 pmid
024 7 _ |a altmetric:173037580
|2 altmetric
037 _ _ |a DZNE-2025-00376
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Tutas, Janine
|0 P:(DE-2719)9002478
|b 0
|u dzne
245 _ _ |a Autophagy regulator ATG5 preserves cerebellar function by safeguarding its glycolytic activity.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740584111_16241
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dysfunctions in autophagy, a cellular mechanism for breaking down components within lysosomes, often lead to neurodegeneration. The specific mechanisms underlying neuronal vulnerability due to autophagy dysfunction remain elusive. Here we show that autophagy contributes to cerebellar Purkinje cell (PC) survival by safeguarding their glycolytic activity. Outside the conventional housekeeping role, autophagy is also involved in the ATG5-mediated regulation of glucose transporter 2 (GLUT2) levels during cerebellar maturation. Autophagy-deficient PCs exhibit GLUT2 accumulation on the plasma membrane, along with increased glucose uptake and alterations in glycolysis. We identify lysophosphatidic acid and serine as glycolytic intermediates that trigger PC death and demonstrate that the deletion of GLUT2 in ATG5-deficient mice mitigates PC neurodegeneration and rescues their ataxic gait. Taken together, this work reveals a mechanism for regulating GLUT2 levels in neurons and provides insights into the neuroprotective role of autophagy by controlling glucose homeostasis in the brain.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Autophagy-Related Protein 5
|2 NLM Chemicals
650 _ 7 |a Atg5 protein, mouse
|2 NLM Chemicals
650 _ 7 |a Glucose
|0 IY9XDZ35W2
|2 NLM Chemicals
650 _ 7 |a Glucose Transporter Type 2
|2 NLM Chemicals
650 _ 7 |a Slc2a2 protein, mouse
|2 NLM Chemicals
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Autophagy-Related Protein 5: metabolism
|2 MeSH
650 _ 2 |a Autophagy-Related Protein 5: genetics
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Glycolysis
|2 MeSH
650 _ 2 |a Autophagy
|2 MeSH
650 _ 2 |a Cerebellum: metabolism
|2 MeSH
650 _ 2 |a Purkinje Cells: metabolism
|2 MeSH
650 _ 2 |a Glucose: metabolism
|2 MeSH
650 _ 2 |a Glucose Transporter Type 2: metabolism
|2 MeSH
650 _ 2 |a Mice, Knockout
|2 MeSH
700 1 _ |a Tolve, Marianna
|0 P:(DE-2719)9002317
|b 1
|u dzne
700 1 _ |a Özer-Yildiz, Ebru
|b 2
700 1 _ |a Ickert, Lotte
|0 0000-0003-2729-0928
|b 3
700 1 _ |a Klein, Ines
|b 4
700 1 _ |a Silverman, Quinn
|0 0000-0003-3660-3199
|b 5
700 1 _ |a Liebsch, Filip
|0 0000-0002-0955-8065
|b 6
700 1 _ |a Dethloff, Frederik
|0 0009-0002-1114-2621
|b 7
700 1 _ |a Giavalisco, Patrick
|0 0000-0002-4636-1827
|b 8
700 1 _ |a Endepols, Heike
|0 0000-0002-6166-4818
|b 9
700 1 _ |a Georgomanolis, Theodoros
|b 10
700 1 _ |a Neumaier, Bernd
|0 0000-0001-5425-3116
|b 11
700 1 _ |a Drzezga, Alexander
|0 P:(DE-2719)2811239
|b 12
700 1 _ |a Schwarz, Guenter
|0 0000-0002-2118-9338
|b 13
700 1 _ |a Thorens, Bernard
|0 0000-0002-3738-0129
|b 14
700 1 _ |a Gatto, Graziana
|0 0000-0002-4244-8925
|b 15
700 1 _ |a Frezza, Christian
|0 0000-0002-3293-7397
|b 16
700 1 _ |a Kononenko, Natalia L
|0 0000-0002-3425-6659
|b 17
773 _ _ |a 10.1038/s42255-024-01196-4
|g Vol. 7, no. 2, p. 297 - 320
|0 PERI:(DE-600)2933873-6
|n 2
|p 297 - 320
|t Nature metabolism
|v 7
|y 2025
|x 2522-5812
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277313/files/DZNE-2025-00376.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277313/files/DZNE-2025-00376.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277313
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-2719)9002478
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)9002317
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2811239
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT METAB : 2022
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT METAB : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1011202
|k AG Boecker
|l Positron Emissions Tomography (PET)
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011202
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21