001     277318
005     20250323000918.0
024 7 _ |a 10.1186/s13321-025-00965-x
|2 doi
024 7 _ |a pmid:40001177
|2 pmid
024 7 _ |a altmetric:174624266
|2 altmetric
037 _ _ |a DZNE-2025-00381
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Oestreich, Marie
|0 P:(DE-2719)9002070
|b 0
|e First author
|u dzne
245 _ _ |a DrugDiff: small molecule diffusion model with flexible guidance towards molecular properties.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1740585001_14535
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a With the cost/yield-ratio of drug development becoming increasingly unfavourable, recent work has explored machine learning to accelerate early stages of the development process. Given the current success of deep generative models across domains, we here investigated their application to the property-based proposal of new small molecules for drug development. Specifically, we trained a latent diffusion model-DrugDiff-paired with predictor guidance to generate novel compounds with a variety of desired molecular properties. The architecture was designed to be highly flexible and easily adaptable to future scenarios. Our experiments showed successful generation of unique, diverse and novel small molecules with targeted properties. The code is available at https://github.com/MarieOestreich/DrugDiff . SCIENTIFIC CONTRIBUTION: This work expands the use of generative modelling in the field of drug development from previously introduced models for proteins and RNA to the here presented application to small molecules. With small molecules making up the majority of drugs, but simultaneously being difficult to model due to their elaborate chemical rules, this work tackles a new level of difficulty in comparison to sequence-based molecule generation as is the case for proteins and RNA. Additionally, the demonstrated framework is highly flexible, allowing easy addition or removal of considered molecular properties without the need to retrain the model, making it highly adaptable to diverse research settings and it shows compelling performance for a wide variety of targeted molecular properties.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Drug development
|2 Other
650 _ 7 |a Generative modelling
|2 Other
650 _ 7 |a Latent diffusion
|2 Other
650 _ 7 |a Targeted generation
|2 Other
693 _ _ |0 EXP:(DE-2719)PRECISE-20190321
|5 EXP:(DE-2719)PRECISE-20190321
|e Platform for Single Cell Genomics and Epigenomics at DZNE University of Bonn
|x 0
700 1 _ |a Merdivan, Erinc
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lee, Michael
|0 P:(DE-2719)9000637
|b 2
|u dzne
700 1 _ |a Schultze, Joachim L
|0 P:(DE-2719)2811660
|b 3
|u dzne
700 1 _ |a Piraud, Marie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Becker, Matthias
|0 P:(DE-2719)2812750
|b 5
|e Last author
|u dzne
773 _ _ |a 10.1186/s13321-025-00965-x
|g Vol. 17, no. 1, p. 23
|0 PERI:(DE-600)2486539-4
|n 1
|p 23
|t Journal of cheminformatics
|v 17
|y 2025
|x 1758-2946
787 0 _ |a Oestreich, Marie et.al.
|d Zenodo, 2024
|i RelatedTo
|0 DZNE-2024-00911
|r
|t Model: DrugDiff - small molecule diffusion model with flexible guidance towards molecular properties (v1)
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277318/files/DZNE-2025-00381.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277318/files/DZNE-2025-00381.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277318
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9002070
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9000637
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2811660
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812750
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J CHEMINFORMATICS : 2022
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J CHEMINFORMATICS : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:40:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:40:53Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 1 _ |0 I:(DE-2719)5000079
|k AG Becker
|l Modular High Performance Computing and Artificial Intelligence
|x 0
920 1 _ |0 I:(DE-2719)1013038
|k AG Schultze
|l Clinical Single Cell Omics (CSCO) / Systems Medicine
|x 1
920 1 _ |0 I:(DE-2719)1013031
|k PRECISE
|l Platform for Single Cell Genomics and Epigenomics
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000079
980 _ _ |a I:(DE-2719)1013038
980 _ _ |a I:(DE-2719)1013031
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21