001     277334
005     20250323000928.0
024 7 _ |a 10.1186/s12961-025-01287-y
|2 doi
024 7 _ |a pmid:40016823
|2 pmid
024 7 _ |a pmc:PMC11869640
|2 pmc
024 7 _ |a altmetric:174835203
|2 altmetric
037 _ _ |a DZNE-2025-00395
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Peltner, Jonas
|0 P:(DE-2719)9002192
|b 0
|e First author
|u dzne
245 _ _ |a The EU project Real4Reg: unlocking real-world data with AI.
260 _ _ |a London
|c 2025
|b BioMed Central
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741167850_8232
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The use of real-world data is established in post-authorization regulatory processes such as pharmacovigilance of drugs and medical devices, but is still frequently challenged in the pre-authorization phase of medicinal products. In addition, the use of real-world data, even in post-authorization steps, is constrained by the availability and heterogeneity of real-world data and by challenges in analysing data from different settings and sources. Moreover, there are emerging opportunities in the use of artificial intelligence in healthcare research, but also a lack of knowledge on its appropriate application to heterogeneous real-world data sources to increase evidentiary value in the regulatory decision-making and health technology assessment context.The Real4Reg project aims to enable the use of real-world data by developing user-friendly solutions for the data analytical needs of health regulatory and health technology assessment bodies across the European Union. These include artificial intelligence algorithms for the effective analysis of real-world data in regulatory decision-making and health technology assessment. The project aims to investigate the value of real-world data from different sources to generate high-quality, accessible, population-based information relevant along the product life cycle. A total of four use cases are used to provide good practice examples for analyses of real-world data for the evaluation and pre-authorization stage, the improvement of methods for external validity in observational data, for post-authorization safety studies and comparative effectiveness using real-world data. This position paper introduces the objectives and structure of the Real4Reg project and discusses its important role in the context of existing European projects focussing on real-world data.Real4Reg focusses on the identification and description of benefits and risks of new and optimized methods in real-world data analysis including aspects of safety, effectiveness, interoperability, appropriateness, accessibility, comparative value creation and sustainability. The project's results will support better decision-making about medicines and benefit patients' health. Trial registration Real4Reg is registered in the HMA-EMA Catalogues of real-world data sources and studies (EU PAS number EUPAS105544).
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a European Union
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Technology Assessment, Biomedical
|2 MeSH
650 _ 2 |a Pharmacovigilance
|2 MeSH
650 _ 2 |a Decision Making
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
700 1 _ |a Becker, Cornelia
|0 P:(DE-2719)9000482
|b 1
700 1 _ |a Wicherski, Julia
|0 P:(DE-2719)9000812
|b 2
700 1 _ |a Wortberg, Silja
|b 3
700 1 _ |a Aborageh, Mohamed
|b 4
700 1 _ |a Costa, Inês
|b 5
700 1 _ |a Ehrenstein, Vera
|b 6
700 1 _ |a Fernandes, Joana
|b 7
700 1 _ |a Heß, Steffen
|b 8
700 1 _ |a Horváth-Puhó, Erzsébet
|b 9
700 1 _ |a Korcinska Handest, Monika Roberta
|b 10
700 1 _ |a Lentzen, Manuel
|b 11
700 1 _ |a Maguire, Peggy
|b 12
700 1 _ |a Meedom, Niels Henrik
|b 13
700 1 _ |a Moore, Rebecca
|b 14
700 1 _ |a Moore, Vanessa
|b 15
700 1 _ |a Nagy, Dávid
|b 16
700 1 _ |a McNamara, Hillary
|b 17
700 1 _ |a Paakinaho, Anne
|b 18
700 1 _ |a Pfeifer, Kerstin
|b 19
700 1 _ |a Pylkkänen, Liisa
|b 20
700 1 _ |a Rajamaki, Blair
|b 21
700 1 _ |a Reviers, Evy
|b 22
700 1 _ |a Röthlein, Christoph
|0 P:(DE-2719)2812311
|b 23
700 1 _ |a Russek, Martin
|0 P:(DE-2719)9002837
|b 24
|u dzne
700 1 _ |a Silva, Célia
|b 25
700 1 _ |a De Valck, Dirk
|b 26
700 1 _ |a Vo, Thuan
|b 27
700 1 _ |a Bräuner, Elvira
|b 28
700 1 _ |a Fröhlich, Holger
|b 29
700 1 _ |a Furtado, Cláudia
|b 30
700 1 _ |a Hartikainen, Sirpa
|b 31
700 1 _ |a Kallio, Aleksi
|b 32
700 1 _ |a Tolppanen, Anna-Maija
|b 33
700 1 _ |a Haenisch, Britta
|0 P:(DE-2719)2810511
|b 34
|e Last author
|u dzne
773 _ _ |a 10.1186/s12961-025-01287-y
|g Vol. 23, no. 1, p. 27
|0 PERI:(DE-600)2101196-5
|n 1
|p 27
|t Health research policy and systems
|v 23
|y 2025
|x 1478-4505
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277334/files/DZNE-2025-00395.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277334/files/DZNE-2025-00395.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277334
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9002192
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 24
|6 P:(DE-2719)9002837
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 34
|6 P:(DE-2719)2810511
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HEALTH RES POLICY SY : 2022
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:39:48Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:39:48Z
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-11
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-11
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 1 _ |0 I:(DE-2719)1013010
|k AG Hänisch
|l Pharmacoepidemiology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013010
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21