001     277419
005     20250320091333.0
024 7 _ |a 10.1097/RLI.0000000000001125
|2 doi
024 7 _ |a pmid:39437019
|2 pmid
024 7 _ |a 0020-9996
|2 ISSN
024 7 _ |a 1536-0210
|2 ISSN
037 _ _ |a DZNE-2025-00402
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Walger, Lennart
|b 0
245 _ _ |a A Quantitative Comparison Between Human and Artificial Intelligence in the Detection of Focal Cortical Dysplasia.
260 _ _ |a Philadelphia, Pa.
|c 2025
|b Lippincott Williams & Wilkins
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742375365_13393
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Artificial intelligence (AI) is thought to improve lesion detection. However, a lack of knowledge about human performance prevents a comparative evaluation of AI and an accurate assessment of its impact on clinical decision-making. The objective of this work is to quantitatively evaluate the ability of humans to detect focal cortical dysplasia (FCD), compare it to state-of-the-art AI, and determine how it may aid diagnostics.We prospectively recorded the performance of readers in detecting FCDs using single points and 3-dimensional bounding boxes. We acquired predictions of 3 AI models for the same dataset and compared these to readers. Finally, we analyzed pairwise combinations of readers and models.Twenty-eight readers, including 20 nonexpert and 5 expert physicians, reviewed 180 cases: 146 subjects with FCD (median age: 25, interquartile range: 18) and 34 healthy control subjects (median age: 43, interquartile range: 19). Nonexpert readers detected 47% (95% confidence interval [CI]: 46, 49) of FCDs, whereas experts detected 68% (95% CI: 65, 71). The 3 AI models detected 32%, 51%, and 72% of FCDs, respectively. The latter, however, also predicted more than 13 false-positive clusters per subject on average. Human performance was improved in the presence of a transmantle sign ( P < 0.001) and cortical thickening ( P < 0.001). In contrast, AI models were sensitive to abnormal gyration ( P < 0.01) or gray-white matter blurring ( P < 0.01). Compared with single experts, expert-expert pairs detected 13% (95% CI: 9, 18) more FCDs ( P < 0.001). All AI models increased expert detection rates by up to 19% (95% CI: 15, 24) ( P < 0.001). Nonexpert+AI pairs could still outperform single experts by up to 13% (95% CI: 10, 17).This study pioneers the comparative evaluation of humans and AI for FCD lesion detection. It shows that AI and human predictions differ, especially for certain MRI features of FCD, and, thus, how AI may complement the diagnostic workup.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Prospective Studies
|2 MeSH
650 _ 2 |a Malformations of Cortical Development: diagnostic imaging
|2 MeSH
650 _ 2 |a Image Interpretation, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Sensitivity and Specificity
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Focal Cortical Dysplasia
|2 MeSH
700 1 _ |a Bauer, Tobias
|0 P:(DE-2719)9002598
|b 1
|u dzne
700 1 _ |a Kügler, David
|0 P:(DE-2719)2814290
|b 2
|u dzne
700 1 _ |a Schmitz, Matthias H
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schuch, Fabiane
|b 4
700 1 _ |a Arendt, Christophe
|b 5
700 1 _ |a Baumgartner, Tobias
|b 6
700 1 _ |a Birkenheier, Johannes
|b 7
700 1 _ |a Borger, Valeri
|b 8
700 1 _ |a Endler, Christoph
|b 9
700 1 _ |a Grau, Franziska
|b 10
700 1 _ |a Immanuel, Christian
|b 11
700 1 _ |a Kölle, Markus
|b 12
700 1 _ |a Kupczyk, Patrick
|b 13
700 1 _ |a Lakghomi, Asadeh
|b 14
700 1 _ |a Mackert, Sarah
|b 15
700 1 _ |a Neuhaus, Elisabeth
|b 16
700 1 _ |a Nordsiek, Julia
|0 P:(DE-2719)9001884
|b 17
700 1 _ |a Odenthal, Anna-Maria
|b 18
700 1 _ |a Dague, Karmele Olaciregui
|b 19
700 1 _ |a Ostermann, Laura
|b 20
700 1 _ |a Pukropski, Jan
|b 21
700 1 _ |a Racz, Attila
|b 22
700 1 _ |a von der Ropp, Klaus
|b 23
700 1 _ |a Schmeel, Frederic Carsten
|0 P:(DE-2719)9001551
|b 24
700 1 _ |a Schrader, Felix
|b 25
700 1 _ |a Sitter, Aileen
|b 26
700 1 _ |a Unruh-Pinheiro, Alexander
|b 27
700 1 _ |a Voigt, Marilia
|b 28
700 1 _ |a Vychopen, Martin
|b 29
700 1 _ |a von Wedel, Philip
|b 30
700 1 _ |a von Wrede, Randi
|b 31
700 1 _ |a Attenberger, Ulrike
|b 32
700 1 _ |a Vatter, Hartmut
|b 33
700 1 _ |a Philipsen, Alexandra
|b 34
700 1 _ |a Becker, Albert
|b 35
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 36
|u dzne
700 1 _ |a Hattingen, Elke
|b 37
700 1 _ |a Sander, Josemir W
|b 38
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 39
|u dzne
700 1 _ |a Surges, Rainer
|b 40
700 1 _ |a Rüber, Theodor
|0 0000-0002-6180-7671
|b 41
773 _ _ |a 10.1097/RLI.0000000000001125
|g Vol. 60, no. 4, p. 253 - 259
|0 PERI:(DE-600)2041543-6
|n 4
|p 253 - 259
|t Investigative radiology
|v 60
|y 2025
|x 0020-9996
909 C O |o oai:pub.dzne.de:277419
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-2719)9002598
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2814290
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 36
|6 P:(DE-2719)2812134
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 39
|6 P:(DE-2719)9001861
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2025
915 _ _ |a Allianz-Lizenz
|0 StatID:(DE-HGF)0410
|2 StatID
|d 2024-12-12
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INVEST RADIOL : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INVEST RADIOL : 2022
|d 2024-12-12
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a I:(DE-2719)5000075
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21