001     277421
005     20250323000945.0
024 7 _ |a 10.1021/acs.jproteome.4c00644
|2 doi
024 7 _ |a pmid:39918541
|2 pmid
024 7 _ |a 1535-3893
|2 ISSN
024 7 _ |a 1535-3907
|2 ISSN
024 7 _ |a altmetric:173951878
|2 altmetric
037 _ _ |a DZNE-2025-00404
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kardell, Oliver
|0 0000-0002-6703-7997
|b 0
245 _ _ |a Multicenter Longitudinal Quality Assessment of MS-Based Proteomics in Plasma and Serum.
260 _ _ |a Washington, DC
|c 2025
|b ACS Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1741607614_6833
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Advancing MS-based proteomics toward clinical applications evolves around developing standardized start-to-finish and fit-for-purpose workflows for clinical specimens. Steps along the method design involve the determination and optimization of several bioanalytical parameters such as selectivity, sensitivity, accuracy, and precision. In a joint effort, eight proteomics laboratories belonging to the MSCoreSys initiative including the CLINSPECT-M, MSTARS, DIASyM, and SMART-CARE consortia performed a longitudinal round-robin study to assess the analysis performance of plasma and serum as clinically relevant samples. A variety of LC-MS/MS setups including mass spectrometer models from ThermoFisher and Bruker as well as LC systems from ThermoFisher, Evosep, and Waters Corporation were used in this study. As key performance indicators, sensitivity, precision, and reproducibility were monitored over time. Protein identifications range between 300 and 400 IDs across different state-of-the-art MS instruments, with timsTOF Pro, Orbitrap Exploris 480, and Q Exactive HF-X being among the top performers. Overall, 71 proteins are reproducibly detectable in all setups in both serum and plasma samples, and 22 of these proteins are FDA-approved biomarkers, which are reproducibly quantified (CV < 20% with label-free quantification). In total, the round-robin study highlights a promising baseline for bringing MS-based measurements of serum and plasma samples closer to clinical utility.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a LC-MS/MS
|2 Other
650 _ 7 |a R package mpwR
|2 Other
650 _ 7 |a clinical specimen
|2 Other
650 _ 7 |a longitudinal round-robin study
|2 Other
650 _ 7 |a plasma
|2 Other
650 _ 7 |a serum
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Blood Proteins
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Proteomics: methods
|2 MeSH
650 _ 2 |a Proteomics: standards
|2 MeSH
650 _ 2 |a Tandem Mass Spectrometry: standards
|2 MeSH
650 _ 2 |a Tandem Mass Spectrometry: methods
|2 MeSH
650 _ 2 |a Longitudinal Studies
|2 MeSH
650 _ 2 |a Chromatography, Liquid: methods
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a Biomarkers: blood
|2 MeSH
650 _ 2 |a Blood Proteins: analysis
|2 MeSH
650 _ 2 |a Plasma: chemistry
|2 MeSH
650 _ 2 |a Serum: chemistry
|2 MeSH
700 1 _ |a Gronauer, Thomas
|b 1
700 1 _ |a von Toerne, Christine
|b 2
700 1 _ |a Merl-Pham, Juliane
|b 3
700 1 _ |a König, Ann-Christine
|b 4
700 1 _ |a Barth, Teresa K
|b 5
700 1 _ |a Mergner, Julia
|b 6
700 1 _ |a Ludwig, Christina
|0 0000-0002-6131-7322
|b 7
700 1 _ |a Tüshaus, Johanna
|b 8
700 1 _ |a Giesbertz, Pieter
|0 P:(DE-2719)9001718
|b 9
|u dzne
700 1 _ |a Breimann, Stephan
|0 P:(DE-2719)9001161
|b 10
700 1 _ |a Schweizer, Lisa
|b 11
700 1 _ |a Müller, Torsten
|b 12
700 1 _ |a Kliewer, Georg
|b 13
700 1 _ |a Distler, Ute
|0 0000-0002-8031-6384
|b 14
700 1 _ |a Gomez-Zepeda, David
|0 0000-0002-9467-1213
|b 15
700 1 _ |a Popp, Oliver
|b 16
700 1 _ |a Qin, Di
|b 17
700 1 _ |a Teupser, Daniel
|b 18
700 1 _ |a Cox, Jürgen
|0 0000-0001-8597-205X
|b 19
700 1 _ |a Imhof, Axel
|0 0000-0003-2993-8249
|b 20
700 1 _ |a Küster, Bernhard
|0 0000-0002-9094-1677
|b 21
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 22
|u dzne
700 1 _ |a Krijgsveld, Jeroen
|b 23
700 1 _ |a Tenzer, Stefan
|0 0000-0003-3034-0017
|b 24
700 1 _ |a Mertins, Philipp
|b 25
700 1 _ |a Coscia, Fabian
|0 0000-0002-2244-5081
|b 26
700 1 _ |a Hauck, Stefanie M
|0 0000-0002-1630-6827
|b 27
773 _ _ |a 10.1021/acs.jproteome.4c00644
|g Vol. 24, no. 3, p. 1017 - 1029
|0 PERI:(DE-600)2065254-9
|n 3
|p 1017 - 1029
|t Journal of proteome research
|v 24
|y 2025
|x 1535-3893
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277421/files/DZNE-2025-00404.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277421/files/DZNE-2025-00404.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277421
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)9001718
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)9001161
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 22
|6 P:(DE-2719)2181459
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PROTEOME RES : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 0
920 1 _ |0 I:(DE-2719)1110000-1
|k AG Steiner
|l Biochemistry of γ-Secretase
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110006
980 _ _ |a I:(DE-2719)1110000-1
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21