Home > Publications Database > Multicenter Longitudinal Quality Assessment of MS-Based Proteomics in Plasma and Serum. > print |
001 | 277421 | ||
005 | 20250323000945.0 | ||
024 | 7 | _ | |a 10.1021/acs.jproteome.4c00644 |2 doi |
024 | 7 | _ | |a pmid:39918541 |2 pmid |
024 | 7 | _ | |a 1535-3893 |2 ISSN |
024 | 7 | _ | |a 1535-3907 |2 ISSN |
024 | 7 | _ | |a altmetric:173951878 |2 altmetric |
037 | _ | _ | |a DZNE-2025-00404 |
041 | _ | _ | |a English |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Kardell, Oliver |0 0000-0002-6703-7997 |b 0 |
245 | _ | _ | |a Multicenter Longitudinal Quality Assessment of MS-Based Proteomics in Plasma and Serum. |
260 | _ | _ | |a Washington, DC |c 2025 |b ACS Publications |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1741607614_6833 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Advancing MS-based proteomics toward clinical applications evolves around developing standardized start-to-finish and fit-for-purpose workflows for clinical specimens. Steps along the method design involve the determination and optimization of several bioanalytical parameters such as selectivity, sensitivity, accuracy, and precision. In a joint effort, eight proteomics laboratories belonging to the MSCoreSys initiative including the CLINSPECT-M, MSTARS, DIASyM, and SMART-CARE consortia performed a longitudinal round-robin study to assess the analysis performance of plasma and serum as clinically relevant samples. A variety of LC-MS/MS setups including mass spectrometer models from ThermoFisher and Bruker as well as LC systems from ThermoFisher, Evosep, and Waters Corporation were used in this study. As key performance indicators, sensitivity, precision, and reproducibility were monitored over time. Protein identifications range between 300 and 400 IDs across different state-of-the-art MS instruments, with timsTOF Pro, Orbitrap Exploris 480, and Q Exactive HF-X being among the top performers. Overall, 71 proteins are reproducibly detectable in all setups in both serum and plasma samples, and 22 of these proteins are FDA-approved biomarkers, which are reproducibly quantified (CV < 20% with label-free quantification). In total, the round-robin study highlights a promising baseline for bringing MS-based measurements of serum and plasma samples closer to clinical utility. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a LC-MS/MS |2 Other |
650 | _ | 7 | |a R package mpwR |2 Other |
650 | _ | 7 | |a clinical specimen |2 Other |
650 | _ | 7 | |a longitudinal round-robin study |2 Other |
650 | _ | 7 | |a plasma |2 Other |
650 | _ | 7 | |a serum |2 Other |
650 | _ | 7 | |a Biomarkers |2 NLM Chemicals |
650 | _ | 7 | |a Blood Proteins |2 NLM Chemicals |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Proteomics: methods |2 MeSH |
650 | _ | 2 | |a Proteomics: standards |2 MeSH |
650 | _ | 2 | |a Tandem Mass Spectrometry: standards |2 MeSH |
650 | _ | 2 | |a Tandem Mass Spectrometry: methods |2 MeSH |
650 | _ | 2 | |a Longitudinal Studies |2 MeSH |
650 | _ | 2 | |a Chromatography, Liquid: methods |2 MeSH |
650 | _ | 2 | |a Reproducibility of Results |2 MeSH |
650 | _ | 2 | |a Biomarkers: blood |2 MeSH |
650 | _ | 2 | |a Blood Proteins: analysis |2 MeSH |
650 | _ | 2 | |a Plasma: chemistry |2 MeSH |
650 | _ | 2 | |a Serum: chemistry |2 MeSH |
700 | 1 | _ | |a Gronauer, Thomas |b 1 |
700 | 1 | _ | |a von Toerne, Christine |b 2 |
700 | 1 | _ | |a Merl-Pham, Juliane |b 3 |
700 | 1 | _ | |a König, Ann-Christine |b 4 |
700 | 1 | _ | |a Barth, Teresa K |b 5 |
700 | 1 | _ | |a Mergner, Julia |b 6 |
700 | 1 | _ | |a Ludwig, Christina |0 0000-0002-6131-7322 |b 7 |
700 | 1 | _ | |a Tüshaus, Johanna |b 8 |
700 | 1 | _ | |a Giesbertz, Pieter |0 P:(DE-2719)9001718 |b 9 |u dzne |
700 | 1 | _ | |a Breimann, Stephan |0 P:(DE-2719)9001161 |b 10 |
700 | 1 | _ | |a Schweizer, Lisa |b 11 |
700 | 1 | _ | |a Müller, Torsten |b 12 |
700 | 1 | _ | |a Kliewer, Georg |b 13 |
700 | 1 | _ | |a Distler, Ute |0 0000-0002-8031-6384 |b 14 |
700 | 1 | _ | |a Gomez-Zepeda, David |0 0000-0002-9467-1213 |b 15 |
700 | 1 | _ | |a Popp, Oliver |b 16 |
700 | 1 | _ | |a Qin, Di |b 17 |
700 | 1 | _ | |a Teupser, Daniel |b 18 |
700 | 1 | _ | |a Cox, Jürgen |0 0000-0001-8597-205X |b 19 |
700 | 1 | _ | |a Imhof, Axel |0 0000-0003-2993-8249 |b 20 |
700 | 1 | _ | |a Küster, Bernhard |0 0000-0002-9094-1677 |b 21 |
700 | 1 | _ | |a Lichtenthaler, Stefan F |0 P:(DE-2719)2181459 |b 22 |u dzne |
700 | 1 | _ | |a Krijgsveld, Jeroen |b 23 |
700 | 1 | _ | |a Tenzer, Stefan |0 0000-0003-3034-0017 |b 24 |
700 | 1 | _ | |a Mertins, Philipp |b 25 |
700 | 1 | _ | |a Coscia, Fabian |0 0000-0002-2244-5081 |b 26 |
700 | 1 | _ | |a Hauck, Stefanie M |0 0000-0002-1630-6827 |b 27 |
773 | _ | _ | |a 10.1021/acs.jproteome.4c00644 |g Vol. 24, no. 3, p. 1017 - 1029 |0 PERI:(DE-600)2065254-9 |n 3 |p 1017 - 1029 |t Journal of proteome research |v 24 |y 2025 |x 1535-3893 |
856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/277421/files/DZNE-2025-00404.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/277421/files/DZNE-2025-00404.pdf?subformat=pdfa |
909 | C | O | |o oai:pub.dzne.de:277421 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 9 |6 P:(DE-2719)9001718 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 10 |6 P:(DE-2719)9001161 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 22 |6 P:(DE-2719)2181459 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-20 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PROTEOME RES : 2022 |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-20 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-20 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2024-12-20 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-20 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-20 |
920 | 1 | _ | |0 I:(DE-2719)1110006 |k AG Lichtenthaler |l Neuroproteomics |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1110000-1 |k AG Steiner |l Biochemistry of γ-Secretase |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-2719)1110006 |
980 | _ | _ | |a I:(DE-2719)1110000-1 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|