001     277530
005     20250320091335.0
024 7 _ |a 10.1016/j.jmb.2025.168987
|2 doi
024 7 _ |a pmid:39947282
|2 pmid
024 7 _ |a 0022-2836
|2 ISSN
024 7 _ |a 1089-8638
|2 ISSN
037 _ _ |a DZNE-2025-00426
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Hoffmann, Christian
|0 P:(DE-2719)9000582
|b 0
|e First author
|u dzne
245 _ _ |a Synapsin Condensation is Governed by Sequence-Encoded Molecular Grammars.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742380238_22981
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Multiple biomolecular condensates coexist at the pre- and post- synapse to enable vesicle dynamics and controlled neurotransmitter release in the brain. In pre-synapses, intrinsically disordered regions (IDRs) of synaptic proteins are drivers of condensation that enable clustering of synaptic vesicles (SVs). Using computational analysis, we show that the IDRs of SV proteins feature evolutionarily conserved non-random compositional biases and sequence patterns. Synapsin-1 is essential for condensation of SVs, and its C-terminal IDR has been shown to be a key driver of condensation. Focusing on this IDR, we dissected the contributions of two conserved features namely the segregation of polar and proline residues along the linear sequence, and the compositional preference for arginine over lysine. Scrambling the blocks of polar and proline residues weakens the driving forces for forming micron-scale condensates. However, the extent of clustering in subsaturated solutions remains equivalent to that of the wild-type synapsin-1. In contrast, substituting arginine with lysine significantly weakens both the driving forces for condensation and the extent of clustering in subsaturated solutions. Co-expression of the scrambled variant of synapsin-1 with synaptophysin results in a gain-of-function phenotype in cells, whereas arginine to lysine substitutions eliminate condensation in cells. We report an emergent consequence of synapsin-1 condensation, which is the generation of interphase pH gradients that is realized via differential partitioning of protons between coexisting phases. This pH gradient is likely to be directly relevant for vesicular ATPase functions and the loading of neurotransmitters. Our studies highlight how conserved IDR grammars serve as drivers of synapsin-1 condensation.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a interphase pH gradient
|2 Other
650 _ 7 |a microfluidics
|2 Other
650 _ 7 |a phase separation
|2 Other
650 _ 7 |a synapse
|2 Other
650 _ 7 |a synapsin 1
|2 Other
650 _ 7 |a Synapsins
|2 NLM Chemicals
650 _ 7 |a Intrinsically Disordered Proteins
|2 NLM Chemicals
650 _ 7 |a Arginine
|0 94ZLA3W45F
|2 NLM Chemicals
650 _ 7 |a Synaptophysin
|2 NLM Chemicals
650 _ 7 |a Lysine
|0 K3Z4F929H6
|2 NLM Chemicals
650 _ 2 |a Synapsins: metabolism
|2 MeSH
650 _ 2 |a Synapsins: chemistry
|2 MeSH
650 _ 2 |a Synapsins: genetics
|2 MeSH
650 _ 2 |a Synaptic Vesicles: metabolism
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Intrinsically Disordered Proteins: metabolism
|2 MeSH
650 _ 2 |a Intrinsically Disordered Proteins: chemistry
|2 MeSH
650 _ 2 |a Intrinsically Disordered Proteins: genetics
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Amino Acid Sequence
|2 MeSH
650 _ 2 |a Arginine: metabolism
|2 MeSH
650 _ 2 |a Arginine: chemistry
|2 MeSH
650 _ 2 |a Synaptophysin: metabolism
|2 MeSH
650 _ 2 |a Synaptophysin: genetics
|2 MeSH
650 _ 2 |a Lysine: metabolism
|2 MeSH
700 1 _ |a Ruff, Kiersten M
|b 1
700 1 _ |a Edu, Irina A
|b 2
700 1 _ |a Shinn, Min Kyung
|b 3
700 1 _ |a Tromm, Johannes V
|0 P:(DE-2719)9002092
|b 4
|u dzne
700 1 _ |a King, Matthew R
|b 5
700 1 _ |a Pant, Avnika
|b 6
700 1 _ |a Ausserwöger, Hannes
|b 7
700 1 _ |a Morgan, Jennifer R
|b 8
700 1 _ |a Knowles, Tuomas P J
|b 9
700 1 _ |a Pappu, Rohit V
|b 10
700 1 _ |a Milovanovic, Dragomir
|0 P:(DE-2719)9000670
|b 11
|e Last author
|u dzne
773 _ _ |a 10.1016/j.jmb.2025.168987
|g Vol. 437, no. 8, p. 168987 -
|0 PERI:(DE-600)1355192-9
|n 8
|p 168987
|t Journal of molecular biology
|v 437
|y 2025
|x 0022-2836
856 4 _ |u https://pub.dzne.de/record/277530/files/DZNE-2025-00426%20SUP.docx
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277530/files/DZNE-2025-00426.pdf
856 4 _ |u https://pub.dzne.de/record/277530/files/DZNE-2025-00426%20SUP.doc
856 4 _ |u https://pub.dzne.de/record/277530/files/DZNE-2025-00426%20SUP.odt
856 4 _ |u https://pub.dzne.de/record/277530/files/DZNE-2025-00426%20SUP.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277530/files/DZNE-2025-00426.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277530
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9000582
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9002092
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)9000670
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-13
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MOL BIOL : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-13
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-13
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-13
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MOL BIOL : 2022
|d 2024-12-13
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-13
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-13
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-13
920 1 _ |0 I:(DE-2719)1813002
|k AG Milovanovic (Berlin)
|l Molecular Neuroscience
|x 0
920 1 _ |0 I:(DE-2719)1013043
|k AG Milovanovic (Bonn)
|l Molecular Neuroscience
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1813002
980 _ _ |a I:(DE-2719)1013043
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21