001     277719
005     20250406001045.0
024 7 _ |a 10.1162/imag_a_00446
|2 doi
024 7 _ |a pmid:40109899
|2 pmid
024 7 _ |a pmc:PMC11917724
|2 pmc
024 7 _ |a altmetric:173808095
|2 altmetric
037 _ _ |a DZNE-2025-00445
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pollak, Clemens
|0 P:(DE-2719)2814183
|b 0
|e First author
|u dzne
245 _ _ |a FastSurfer-LIT: Lesion inpainting tool for whole-brain MRI segmentation with tumors, cavities, and abnormalities.
260 _ _ |a Cambridge, MA
|c 2025
|b MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1743584083_9485
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Resection cavities, tumors, and other lesions can fundamentally alter brain structure and present as abnormalities in brain MRI. Specifically, quantifying subtle neuroanatomical changes in other, not directly affected regions of the brain is essential to assess the impact of tumors, surgery, chemo/radiotherapy, or drug treatments. However, only a limited number of solutions address this important task, while many standard analysis pipelines simply do not support abnormal brain images at all. In this paper, we present a method to perform sensitive neuroanatomical analysis of healthy brain regions in the presence of large lesions and cavities. Our approach called 'FastSurfer Lesion Inpainting Tool' (FastSurfer-LIT) leverages the recently emerged Denoising Diffusion Probabilistic Models (DDPM) to fill lesion areas with healthy tissue that matches and extends the surrounding tissue. This enables subsequent processing with established MRI analysis methods such as the calculation of adjusted volume and surface measurements using FastSurfer or FreeSurfer. FastSurfer-LIT significantly outperforms previously proposed solutions on a large dataset of simulated brain tumors (N = 100) and synthetic multiple sclerosis lesions (N = 39) with improved Dice and Hausdorff measures, and also on a highly heterogeneous dataset with lesions and cavities in a manual assessment (N = 100). Finally, we demonstrate increased reliability to reproduce pre-operative cortical thickness estimates from corresponding post-operative temporo-mesial resection surgery MRIs. The method is publicly available at https://github.com/Deep-MI/LIT and will be integrated into the FastSurfer toolbox.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a brain filling
|2 Other
650 _ 7 |a inpainting
|2 Other
650 _ 7 |a lesion
|2 Other
650 _ 7 |a segmentation
|2 Other
650 _ 7 |a software
|2 Other
650 _ 7 |a tumor
|2 Other
700 1 _ |a Kügler, David
|0 P:(DE-2719)2814290
|b 1
|u dzne
700 1 _ |a Bauer, Tobias
|0 P:(DE-2719)9002598
|b 2
|u dzne
700 1 _ |a Rüber, Theodor
|b 3
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 4
|e Last author
|u dzne
773 _ _ |a 10.1162/imag_a_00446
|g Vol. 3, p. imag_a_00446
|0 PERI:(DE-600)3167925-0
|p imag_a_00446
|t Imaging neuroscience
|v 3
|y 2025
|x 2837-6056
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277719/files/DZNE-2025-00445.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277719/files/DZNE-2025-00445.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277719
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2814183
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2814290
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-2719)9002598
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812134
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2025
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-09-26T09:40:26Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-09-26T09:40:26Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-09-26T09:40:26Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1040310
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21