000277731 001__ 277731
000277731 005__ 20250403095901.0
000277731 0247_ $$2doi$$a10.1152/jn.00622.2024
000277731 0247_ $$2pmid$$apmid:40013734
000277731 0247_ $$2ISSN$$a0022-3077
000277731 0247_ $$2ISSN$$a1522-1598
000277731 037__ $$aDZNE-2025-00452
000277731 041__ $$aEnglish
000277731 082__ $$a000
000277731 1001_ $$00009-0001-0741-4500$$aSchünemann, Kerstin D$$b0
000277731 245__ $$aComprehensive analysis of human dendritic spine morphology and density.
000277731 260__ $$aBethesda, Md.$$bSoc.$$c2025
000277731 3367_ $$2DRIVER$$aarticle
000277731 3367_ $$2DataCite$$aOutput Types/Journal article
000277731 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1743594171_4130
000277731 3367_ $$2BibTeX$$aARTICLE
000277731 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277731 3367_ $$00$$2EndNote$$aJournal Article
000277731 520__ $$aDendritic spines, small protrusions on neuronal dendrites, play a crucial role in brain function by changing shape and size in response to neural activity. So far, in-depth analysis of dendritic spines in human brain tissue is lacking. This study presents a comprehensive analysis of human dendritic spine morphology and density using a unique dataset from human brain tissue from 27 patients (8 females, 19 males, aged 18-71 yr) undergoing tumor or epilepsy surgery at three neurosurgery sites. We used acute slices and organotypic brain slice cultures to examine dendritic spines, classifying them into the three main morphological subtypes: mushroom, thin, and stubby, via three-dimensional (3-D) reconstruction using ZEISS arivis Pro software. A deep learning model, trained on 39 diverse datasets, automated spine segmentation and 3-D reconstruction, achieving a 74% F1-score and reducing processing time by over 50%. We show significant differences in spine density by sex, dendrite type, and tissue condition. Females had higher spine densities than males, and apical dendrites were denser in spines than basal ones. Acute tissue showed higher spine densities compared with cultured human brain tissue. With time in culture, mushroom spines decreased, whereas stubby and thin spine percentages increased, particularly from 7-9 to 14 days in vitro, reflecting potential synaptic plasticity changes. Our study underscores the importance of using human brain tissue to understand unique synaptic properties and shows that integrating deep learning with traditional methods enables efficient large-scale analysis, revealing key insights into sex- and tissue-specific dendritic spine dynamics relevant to neurological diseases.NEW & NOTEWORTHY This study presents a dataset of nearly 4,000 morphologically reconstructed human dendritic spines across different ages, gender, and tissue conditions. The dataset was further used to evaluate a deep learning algorithm for three-dimensional spine reconstruction, offering a scalable method for semiautomated spine analysis across various tissues and microscopy setups. The findings enhance understanding of human neurology, indicating potential connections between spine morphology, brain function, and the mechanisms of neurological and psychiatric diseases.
000277731 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000277731 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000277731 650_7 $$2Other$$adeep learning
000277731 650_7 $$2Other$$adendritic spines
000277731 650_7 $$2Other$$ahuman tissue
000277731 650_7 $$2Other$$amorphology
000277731 650_2 $$2MeSH$$aHumans
000277731 650_2 $$2MeSH$$aMale
000277731 650_2 $$2MeSH$$aFemale
000277731 650_2 $$2MeSH$$aMiddle Aged
000277731 650_2 $$2MeSH$$aAdult
000277731 650_2 $$2MeSH$$aDendritic Spines: physiology
000277731 650_2 $$2MeSH$$aAged
000277731 650_2 $$2MeSH$$aAdolescent
000277731 650_2 $$2MeSH$$aYoung Adult
000277731 650_2 $$2MeSH$$aDeep Learning
000277731 650_2 $$2MeSH$$aImaging, Three-Dimensional: methods
000277731 7001_ $$00000-0002-8244-5542$$aHattingh, Roxanne M$$b1
000277731 7001_ $$00000-0002-8500-1795$$aVerhoog, Matthijs B$$b2
000277731 7001_ $$aYang, Danqing$$b3
000277731 7001_ $$00000-0003-2449-9689$$aBak, Aniella V$$b4
000277731 7001_ $$aPeter, Sabrina$$b5
000277731 7001_ $$00000-0003-3074-5612$$avan Loo, Karen M J$$b6
000277731 7001_ $$00000-0002-1460-6623$$aWolking, Stefan$$b7
000277731 7001_ $$0P:(DE-2719)9001451$$aKronenberg-Versteeg, Deborah$$b8$$udzne
000277731 7001_ $$00000-0002-0806-5592$$aWeber, Yvonne$$b9
000277731 7001_ $$00000-0002-4064-3073$$aSchwarz, Niklas$$b10
000277731 7001_ $$aRaimondo, Joseph V$$b11
000277731 7001_ $$aMelvill, Roger$$b12
000277731 7001_ $$aTromp, Sean A$$b13
000277731 7001_ $$00000-0003-1978-6894$$aButler, James T$$b14
000277731 7001_ $$00000-0001-6798-5703$$aHöllig, Anke$$b15
000277731 7001_ $$aDelev, Daniel$$b16
000277731 7001_ $$00000-0001-5655-8490$$aWuttke, Thomas V$$b17
000277731 7001_ $$00000-0002-4343-2634$$aKampa, Björn M$$b18
000277731 7001_ $$00000-0002-6883-3071$$aKoch, Henner$$b19
000277731 773__ $$0PERI:(DE-600)1467889-5$$a10.1152/jn.00622.2024$$gVol. 133, no. 4, p. 1086 - 1102$$n4$$p1086 - 1102$$tJournal of neurophysiology$$v133$$x0022-3077$$y2025
000277731 8564_ $$uhttps://pub.dzne.de/record/277731/files/DZNE-2025-00452_Restricted.pdf
000277731 8564_ $$uhttps://pub.dzne.de/record/277731/files/DZNE-2025-00452_Restricted.pdf?subformat=pdfa$$xpdfa
000277731 909CO $$ooai:pub.dzne.de:277731$$pVDB
000277731 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001451$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000277731 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000277731 9141_ $$y2025
000277731 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-03$$wger
000277731 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-03
000277731 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-03
000277731 9201_ $$0I:(DE-2719)1210015$$kAG Kronenberg-Versteeg$$lGlial Cell Biology$$x0
000277731 980__ $$ajournal
000277731 980__ $$aVDB
000277731 980__ $$aI:(DE-2719)1210015
000277731 980__ $$aUNRESTRICTED