001     277731
005     20250403095901.0
024 7 _ |a 10.1152/jn.00622.2024
|2 doi
024 7 _ |a pmid:40013734
|2 pmid
024 7 _ |a 0022-3077
|2 ISSN
024 7 _ |a 1522-1598
|2 ISSN
037 _ _ |a DZNE-2025-00452
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Schünemann, Kerstin D
|0 0009-0001-0741-4500
|b 0
245 _ _ |a Comprehensive analysis of human dendritic spine morphology and density.
260 _ _ |a Bethesda, Md.
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1743594171_4130
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dendritic spines, small protrusions on neuronal dendrites, play a crucial role in brain function by changing shape and size in response to neural activity. So far, in-depth analysis of dendritic spines in human brain tissue is lacking. This study presents a comprehensive analysis of human dendritic spine morphology and density using a unique dataset from human brain tissue from 27 patients (8 females, 19 males, aged 18-71 yr) undergoing tumor or epilepsy surgery at three neurosurgery sites. We used acute slices and organotypic brain slice cultures to examine dendritic spines, classifying them into the three main morphological subtypes: mushroom, thin, and stubby, via three-dimensional (3-D) reconstruction using ZEISS arivis Pro software. A deep learning model, trained on 39 diverse datasets, automated spine segmentation and 3-D reconstruction, achieving a 74% F1-score and reducing processing time by over 50%. We show significant differences in spine density by sex, dendrite type, and tissue condition. Females had higher spine densities than males, and apical dendrites were denser in spines than basal ones. Acute tissue showed higher spine densities compared with cultured human brain tissue. With time in culture, mushroom spines decreased, whereas stubby and thin spine percentages increased, particularly from 7-9 to 14 days in vitro, reflecting potential synaptic plasticity changes. Our study underscores the importance of using human brain tissue to understand unique synaptic properties and shows that integrating deep learning with traditional methods enables efficient large-scale analysis, revealing key insights into sex- and tissue-specific dendritic spine dynamics relevant to neurological diseases.NEW & NOTEWORTHY This study presents a dataset of nearly 4,000 morphologically reconstructed human dendritic spines across different ages, gender, and tissue conditions. The dataset was further used to evaluate a deep learning algorithm for three-dimensional spine reconstruction, offering a scalable method for semiautomated spine analysis across various tissues and microscopy setups. The findings enhance understanding of human neurology, indicating potential connections between spine morphology, brain function, and the mechanisms of neurological and psychiatric diseases.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a deep learning
|2 Other
650 _ 7 |a dendritic spines
|2 Other
650 _ 7 |a human tissue
|2 Other
650 _ 7 |a morphology
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Dendritic Spines: physiology
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Deep Learning
|2 MeSH
650 _ 2 |a Imaging, Three-Dimensional: methods
|2 MeSH
700 1 _ |a Hattingh, Roxanne M
|0 0000-0002-8244-5542
|b 1
700 1 _ |a Verhoog, Matthijs B
|0 0000-0002-8500-1795
|b 2
700 1 _ |a Yang, Danqing
|b 3
700 1 _ |a Bak, Aniella V
|0 0000-0003-2449-9689
|b 4
700 1 _ |a Peter, Sabrina
|b 5
700 1 _ |a van Loo, Karen M J
|0 0000-0003-3074-5612
|b 6
700 1 _ |a Wolking, Stefan
|0 0000-0002-1460-6623
|b 7
700 1 _ |a Kronenberg-Versteeg, Deborah
|0 P:(DE-2719)9001451
|b 8
|u dzne
700 1 _ |a Weber, Yvonne
|0 0000-0002-0806-5592
|b 9
700 1 _ |a Schwarz, Niklas
|0 0000-0002-4064-3073
|b 10
700 1 _ |a Raimondo, Joseph V
|b 11
700 1 _ |a Melvill, Roger
|b 12
700 1 _ |a Tromp, Sean A
|b 13
700 1 _ |a Butler, James T
|0 0000-0003-1978-6894
|b 14
700 1 _ |a Höllig, Anke
|0 0000-0001-6798-5703
|b 15
700 1 _ |a Delev, Daniel
|b 16
700 1 _ |a Wuttke, Thomas V
|0 0000-0001-5655-8490
|b 17
700 1 _ |a Kampa, Björn M
|0 0000-0002-4343-2634
|b 18
700 1 _ |a Koch, Henner
|0 0000-0002-6883-3071
|b 19
773 _ _ |a 10.1152/jn.00622.2024
|g Vol. 133, no. 4, p. 1086 - 1102
|0 PERI:(DE-600)1467889-5
|n 4
|p 1086 - 1102
|t Journal of neurophysiology
|v 133
|y 2025
|x 0022-3077
856 4 _ |u https://pub.dzne.de/record/277731/files/DZNE-2025-00452_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/277731/files/DZNE-2025-00452_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:pub.dzne.de:277731
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)9001451
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-03
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-03
920 1 _ |0 I:(DE-2719)1210015
|k AG Kronenberg-Versteeg
|l Glial Cell Biology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1210015
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21