000277741 001__ 277741
000277741 005__ 20250420001113.0
000277741 0247_ $$2doi$$a10.1152/ajpcell.00308.2024
000277741 0247_ $$2pmid$$apmid:40019026
000277741 0247_ $$2ISSN$$a0363-6143
000277741 0247_ $$2ISSN$$a1522-1563
000277741 0247_ $$2altmetric$$aaltmetric:174760586
000277741 037__ $$aDZNE-2025-00462
000277741 041__ $$aEnglish
000277741 082__ $$a000
000277741 1001_ $$aTiper, Yekaterina$$b0
000277741 245__ $$aOptimizing electrical field stimulation parameters reveals the maximum contractile function of human skeletal muscle microtissues.
000277741 260__ $$aBethesda, Md.$$bAmerican Physiological Society$$c2025
000277741 3367_ $$2DRIVER$$aarticle
000277741 3367_ $$2DataCite$$aOutput Types/Journal article
000277741 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742908649_2887
000277741 3367_ $$2BibTeX$$aARTICLE
000277741 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277741 3367_ $$00$$2EndNote$$aJournal Article
000277741 520__ $$aSkeletal muscle microtissues are engineered to develop therapies for restoring muscle function in patients. However, optimal electrical field stimulation (EFS) parameters to evaluate the function of muscle microtissues remain unestablished. This study reports a protocol to optimize EFS parameters for eliciting contractile force of muscle microtissues cultured in micropost platforms. Muscle microtissues were produced across an opposing pair of microposts in polydimethylsiloxane and polymethyl methacrylate culture platforms using primary, immortalized, and induced pluripotent stem cell-derived myoblasts. In response to EFS between needle electrodes, contraction deflects microposts proportional to developed force. At 5 V, pulse durations used for native muscle (0.1-1 ms) failed to elicit contraction of microtissues; durations reported for engineered muscle (5-10 ms) failed to elicit peak force. Instead, pulse durations of 20-80 ms were required to elicit peak twitch force across microtissues derived from five myoblast lines. Similarly, although peak tetanic force occurs at 20-50 Hz for native human muscles, it varied across microtissues depending on the cell line type, ranging from 7 to 60 Hz. A new parameter, the dynamic oscillation of force, captured trends during rhythmic contractions, whereas quantifying the duration-at-peak force provides an extended kinetics parameter. Our findings indicate that muscle microtissues have cell line type-specific contractile properties, yet all contract and relax more slowly than native muscle, implicating underdeveloped excitation-contraction coupling. Failure to optimize EFS parameters can mask the functional potential of muscle microtissues by underestimating force production. Optimizing and reporting EFS parameters and metrics is necessary to leverage muscle microtissues for advancing skeletal muscle therapies.NEW & NOTEWORTHY Electrical field stimulation (EFS) parameters remain to be standardized for engineered skeletal muscle. Herein, we report a protocol for defining EFS parameters that elicit the maximal contractile force of muscle microtissues cultivated in micropost devices and highlight the value of developing appropriate metrics. The dynamic oscillation of force and duration-at-peak force are introduced as novel metrics of contraction kinetics.
000277741 536__ $$0G:(DE-HGF)POF4-352$$a352 - Disease Mechanisms (POF4-352)$$cPOF4-352$$fPOF IV$$x0
000277741 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000277741 650_7 $$2Other$$acontractile function
000277741 650_7 $$2Other$$aelectrical field stimulation
000277741 650_7 $$2Other$$aengineered skeletal muscle
000277741 650_7 $$2Other$$ainduced pluripotent stem cells
000277741 650_7 $$2Other$$amicropost platform
000277741 650_2 $$2MeSH$$aHumans
000277741 650_2 $$2MeSH$$aMuscle Contraction: physiology
000277741 650_2 $$2MeSH$$aElectric Stimulation: methods
000277741 650_2 $$2MeSH$$aMuscle, Skeletal: physiology
000277741 650_2 $$2MeSH$$aMyoblasts: physiology
000277741 650_2 $$2MeSH$$aMyoblasts: cytology
000277741 650_2 $$2MeSH$$aTissue Engineering: methods
000277741 650_2 $$2MeSH$$aInduced Pluripotent Stem Cells: physiology
000277741 650_2 $$2MeSH$$aInduced Pluripotent Stem Cells: cytology
000277741 650_2 $$2MeSH$$aCells, Cultured
000277741 650_2 $$2MeSH$$aCell Line
000277741 7001_ $$aXie, Zhuoye$$b1
000277741 7001_ $$00000-0002-5403-5407$$aHofemeier, Arne$$b2
000277741 7001_ $$aLad, Heta$$b3
000277741 7001_ $$00000-0002-3775-0804$$aLuber, Mattias$$b4
000277741 7001_ $$00000-0002-2576-4504$$aKrawetz, Roman$$b5
000277741 7001_ $$00000-0002-1548-0655$$aBetz, Timo$$b6
000277741 7001_ $$0P:(DE-2719)9001434$$aZimmermann, Wolfram-Hubertus$$b7$$udzne
000277741 7001_ $$00000-0002-9790-705X$$aMorton, Aaron B$$b8
000277741 7001_ $$00000-0001-5667-2154$$aSegal, Steven S$$b9
000277741 7001_ $$00000-0001-5509-9616$$aGilbert, Penney M$$b10
000277741 773__ $$0PERI:(DE-600)1477334-X$$a10.1152/ajpcell.00308.2024$$gVol. 328, no. 4, p. C1160 - C1176$$n4$$pC1160 - C1176$$tAmerican journal of physiology / Cell physiology$$v328$$x0363-6143$$y2025
000277741 8564_ $$uhttps://pub.dzne.de/record/277741/files/DZNE-2025-00462.pdf$$yOpenAccess
000277741 8564_ $$uhttps://pub.dzne.de/record/277741/files/DZNE-2025-00462.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000277741 909CO $$ooai:pub.dzne.de:277741$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000277741 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001434$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000277741 9131_ $$0G:(DE-HGF)POF4-352$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Mechanisms$$x0
000277741 9141_ $$y2025
000277741 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAM J PHYSIOL-CELL PH : 2022$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000277741 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAM J PHYSIOL-CELL PH : 2022$$d2025-01-07
000277741 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-07
000277741 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000277741 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-07$$wger
000277741 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-07
000277741 9201_ $$0I:(DE-2719)1410002$$kAG Fischer$$lEpigenetics and Systems Medicine in Neurodegenerative Diseases$$x0
000277741 980__ $$ajournal
000277741 980__ $$aVDB
000277741 980__ $$aUNRESTRICTED
000277741 980__ $$aI:(DE-2719)1410002
000277741 9801_ $$aFullTexts