001     277741
005     20250420001113.0
024 7 _ |a 10.1152/ajpcell.00308.2024
|2 doi
024 7 _ |a pmid:40019026
|2 pmid
024 7 _ |a 0363-6143
|2 ISSN
024 7 _ |a 1522-1563
|2 ISSN
024 7 _ |a altmetric:174760586
|2 altmetric
037 _ _ |a DZNE-2025-00462
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Tiper, Yekaterina
|b 0
245 _ _ |a Optimizing electrical field stimulation parameters reveals the maximum contractile function of human skeletal muscle microtissues.
260 _ _ |a Bethesda, Md.
|c 2025
|b American Physiological Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742908649_2887
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Skeletal muscle microtissues are engineered to develop therapies for restoring muscle function in patients. However, optimal electrical field stimulation (EFS) parameters to evaluate the function of muscle microtissues remain unestablished. This study reports a protocol to optimize EFS parameters for eliciting contractile force of muscle microtissues cultured in micropost platforms. Muscle microtissues were produced across an opposing pair of microposts in polydimethylsiloxane and polymethyl methacrylate culture platforms using primary, immortalized, and induced pluripotent stem cell-derived myoblasts. In response to EFS between needle electrodes, contraction deflects microposts proportional to developed force. At 5 V, pulse durations used for native muscle (0.1-1 ms) failed to elicit contraction of microtissues; durations reported for engineered muscle (5-10 ms) failed to elicit peak force. Instead, pulse durations of 20-80 ms were required to elicit peak twitch force across microtissues derived from five myoblast lines. Similarly, although peak tetanic force occurs at 20-50 Hz for native human muscles, it varied across microtissues depending on the cell line type, ranging from 7 to 60 Hz. A new parameter, the dynamic oscillation of force, captured trends during rhythmic contractions, whereas quantifying the duration-at-peak force provides an extended kinetics parameter. Our findings indicate that muscle microtissues have cell line type-specific contractile properties, yet all contract and relax more slowly than native muscle, implicating underdeveloped excitation-contraction coupling. Failure to optimize EFS parameters can mask the functional potential of muscle microtissues by underestimating force production. Optimizing and reporting EFS parameters and metrics is necessary to leverage muscle microtissues for advancing skeletal muscle therapies.NEW & NOTEWORTHY Electrical field stimulation (EFS) parameters remain to be standardized for engineered skeletal muscle. Herein, we report a protocol for defining EFS parameters that elicit the maximal contractile force of muscle microtissues cultivated in micropost devices and highlight the value of developing appropriate metrics. The dynamic oscillation of force and duration-at-peak force are introduced as novel metrics of contraction kinetics.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a contractile function
|2 Other
650 _ 7 |a electrical field stimulation
|2 Other
650 _ 7 |a engineered skeletal muscle
|2 Other
650 _ 7 |a induced pluripotent stem cells
|2 Other
650 _ 7 |a micropost platform
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Muscle Contraction: physiology
|2 MeSH
650 _ 2 |a Electric Stimulation: methods
|2 MeSH
650 _ 2 |a Muscle, Skeletal: physiology
|2 MeSH
650 _ 2 |a Myoblasts: physiology
|2 MeSH
650 _ 2 |a Myoblasts: cytology
|2 MeSH
650 _ 2 |a Tissue Engineering: methods
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: physiology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Cells, Cultured
|2 MeSH
650 _ 2 |a Cell Line
|2 MeSH
700 1 _ |a Xie, Zhuoye
|b 1
700 1 _ |a Hofemeier, Arne
|0 0000-0002-5403-5407
|b 2
700 1 _ |a Lad, Heta
|b 3
700 1 _ |a Luber, Mattias
|0 0000-0002-3775-0804
|b 4
700 1 _ |a Krawetz, Roman
|0 0000-0002-2576-4504
|b 5
700 1 _ |a Betz, Timo
|0 0000-0002-1548-0655
|b 6
700 1 _ |a Zimmermann, Wolfram-Hubertus
|0 P:(DE-2719)9001434
|b 7
|u dzne
700 1 _ |a Morton, Aaron B
|0 0000-0002-9790-705X
|b 8
700 1 _ |a Segal, Steven S
|0 0000-0001-5667-2154
|b 9
700 1 _ |a Gilbert, Penney M
|0 0000-0001-5509-9616
|b 10
773 _ _ |a 10.1152/ajpcell.00308.2024
|g Vol. 328, no. 4, p. C1160 - C1176
|0 PERI:(DE-600)1477334-X
|n 4
|p C1160 - C1176
|t American journal of physiology / Cell physiology
|v 328
|y 2025
|x 0363-6143
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/277741/files/DZNE-2025-00462.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/277741/files/DZNE-2025-00462.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:277741
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001434
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b AM J PHYSIOL-CELL PH : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b AM J PHYSIOL-CELL PH : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410002
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21