000277799 001__ 277799
000277799 005__ 20250423100224.0
000277799 0247_ $$2doi$$a10.3390/cancers17060935
000277799 0247_ $$2pmid$$apmid:40149270
000277799 037__ $$aDZNE-2025-00477
000277799 041__ $$aEnglish
000277799 082__ $$a610
000277799 1001_ $$00009-0008-5336-7240$$aMoser, Ismael$$b0
000277799 245__ $$aAnalysis of Neuronal Excitability Profiles for Motor-Eloquent Brain Tumor Entities Using nTMS in 800 Patients.
000277799 260__ $$aBasel$$bMDPI$$c2025
000277799 3367_ $$2DRIVER$$aarticle
000277799 3367_ $$2DataCite$$aOutput Types/Journal article
000277799 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745322374_8182
000277799 3367_ $$2BibTeX$$aARTICLE
000277799 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277799 3367_ $$00$$2EndNote$$aJournal Article
000277799 520__ $$aNon-invasive motor mapping with navigated transcranial magnetic stimulation (nTMS) is an established diagnostic tool to identify spatial relationships between functional and tumor areas and to characterize motor excitability. Recently, nTMS has been used to analyze the impact of different brain tumor entities on motor excitability. However, entity-specific excitability patterns are not sufficiently validated yet.We retrospectively analyzed nTMS motor mapping data of 800 motor-eloquent brain tumor patients in this observational study. The motor excitability profile consisted of four nTMS parameters (resting motor threshold (RMT), cortical motor area, amplitude and latency) measured on both hemispheres. The relationship between motor excitability parameters and tumor entity, glioma subtype and motor status were assessed using multiple regressions analyses. Regression models included patient- and tumor-specific factors.Gliomas had more frequent pathologic RMT ratios (OR 1.76, 95%CI: 1.06-2.89, p = 0.030) compared to benign entities. In the subgroup of gliomas, pathologic RMT ratios were more associated with the isocitrate dehydrogenase (IDH)-wildtype status (OR 0.43, 95%CI: 0.23-0.79, p = 0.006) and less so with higher WHO grades (OR 1.61, 95%CI: 0.96-2.71, p = 0.074). This was true for both IDH-mutant astrocytomas (OR 0.43, 95%CI: 0.20-0.91, p = 0.027) and IDH-mutant oligodendrogliomas (OR 0.43, 95%CI: 0.20-0.93, p = 0.031). Motor area enlargement on the tumor hemisphere was more frequently observed in lower WHO-graded gliomas (OR 0.87, 95%CI: 0.78-0.97, p = 0.019). Interestingly, a larger cortical motor area was additionally found for oligodendrogliomas on the healthy hemisphere (OR 1.18, 95%CI: 1.01-1.39, p = 0.041). Motor deficits were related with higher RMT (OR 1.12, 95%CI: 1.05-1.21, p = 0.001), reduced amplitude (OR 0.78, 95%CI: 0.64-0.96, p = 0.019) and prolonged latency (OR 1.12, 95%CI: 1.02-1.24, p = 0.025) in the tumor hemisphere.Neuroplastic phenomena such as adjustment of the motor excitability level and an enlargement of the nTMS-positive motor area were more frequently observed in benign tumors and in IDH-mutated gliomas. Consequently, patients experienced motor deficits less often, suggesting a differentiated susceptibility to resection-related paresis. Future studies will analyze which stimulation paradigms are most effective in stimulating and optimizing neuroplasticity processes to improve the functional outcomes (and thus the quality of life) for patients.
000277799 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000277799 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000277799 650_7 $$2Other$$abrain tumor
000277799 650_7 $$2Other$$acorticospinal tract
000277799 650_7 $$2Other$$aglioma
000277799 650_7 $$2Other$$amotor cortex
000277799 650_7 $$2Other$$amotor evoked potential
000277799 650_7 $$2Other$$amotor excitability
000277799 650_7 $$2Other$$anavigated transcranial magnetic stimulation
000277799 650_7 $$2Other$$aneuroplasticity
000277799 650_7 $$2Other$$aresting motor threshold
000277799 7001_ $$00000-0002-2921-6329$$aEngelhardt, Melina$$b1
000277799 7001_ $$00000-0003-2595-0224$$aGrittner, Ulrike$$b2
000277799 7001_ $$00000-0002-9289-2485$$aFerreira, Felipe Monte Santo Regino$$b3
000277799 7001_ $$00009-0000-4868-8789$$aDenker, Maren$$b4
000277799 7001_ $$aReinsch, Jennifer$$b5
000277799 7001_ $$aFischer, Lisa$$b6
000277799 7001_ $$aLink, Tilman$$b7
000277799 7001_ $$0P:(DE-2719)2812386$$aHeppner, Frank L$$b8$$udzne
000277799 7001_ $$00000-0003-1945-497X$$aCapper, David$$b9
000277799 7001_ $$00000-0003-4350-392X$$aVajkoczy, Peter$$b10
000277799 7001_ $$00000-0002-8630-1466$$aPicht, Thomas$$b11
000277799 7001_ $$00000-0002-0620-9118$$aRosenstock, Tizian$$b12
000277799 770__ $$aSurgical Advances in the Treatment of Gliomas: Preserving Function and Quality of Life
000277799 773__ $$0PERI:(DE-600)2527080-1$$a10.3390/cancers17060935$$gVol. 17, no. 6, p. 935 -$$n6$$p935$$tCancers$$v17$$x2072-6694$$y2025
000277799 8564_ $$uhttps://pub.dzne.de/record/277799/files/DZNE-2025-00477_SUPP.pdf
000277799 8564_ $$uhttps://pub.dzne.de/record/277799/files/DZNE-2025-00477.pdf$$yOpenAccess
000277799 8564_ $$uhttps://pub.dzne.de/record/277799/files/DZNE-2025-00477.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000277799 909CO $$ooai:pub.dzne.de:277799$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000277799 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812386$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000277799 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000277799 9141_ $$y2025
000277799 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCANCERS : 2022$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000277799 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCANCERS : 2022$$d2024-12-14
000277799 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-14
000277799 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000277799 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-14
000277799 9201_ $$0I:(DE-2719)1810007$$kAG Heppner$$lNeuroimmunology$$x0
000277799 980__ $$ajournal
000277799 980__ $$aVDB
000277799 980__ $$aUNRESTRICTED
000277799 980__ $$aI:(DE-2719)1810007
000277799 9801_ $$aFullTexts