000277981 001__ 277981
000277981 005__ 20250504001141.0
000277981 0247_ $$2doi$$a10.3389/fphys.2025.1543812
000277981 0247_ $$2pmid$$apmid:40213144
000277981 0247_ $$2pmc$$apmc:PMC11983514
000277981 0247_ $$2altmetric$$aaltmetric:175558415
000277981 037__ $$aDZNE-2025-00513
000277981 041__ $$aEnglish
000277981 082__ $$a610
000277981 1001_ $$aCloos, Anne-Sophie$$b0
000277981 245__ $$aRed blood cell lipid distribution in the pathophysiology and laboratory evaluation of chorea-acanthocytosis and McLeod syndrome patients.
000277981 260__ $$aLausanne$$bFrontiers Research Foundation$$c2025
000277981 3367_ $$2DRIVER$$aarticle
000277981 3367_ $$2DataCite$$aOutput Types/Journal article
000277981 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745917290_20011
000277981 3367_ $$2BibTeX$$aARTICLE
000277981 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000277981 3367_ $$00$$2EndNote$$aJournal Article
000277981 520__ $$aThe core neuroacanthocytosis syndromes, i.e., chorea-acanthocytosis/VPS13A disease (ChAc) and McLeod syndrome/XK disease (MLS), are respectively due to mutations in VPS13A and XK genes and share similar manifestations including the formation of acanthocytes. We previously showed by lipidomics of red blood cells (RBCs) from ChAc patients slight lipid changes compared to healthy controls. We here evaluated the consequences for RBC morphology, deformability, cytoskeleton and membrane lipid transversal and lateral distribution in five patients with ChAc and two patients with MLS. Compared to healthy donors, the two patient cohorts showed a strong increase of abnormal RBCs including acanthocytes and spheroechinocytes, a decrease in RBC projected surface area and deformability, and a rise in spectrin density. The abundance of cholesterol-enriched domains and the proportion of RBCs with ceramide-enriched patches were also increased while phosphatidylserine surface exposure was slightly decreased. In contrast, the abundance of sphingomyelin-enriched domains was poorly affected. At the individual level, patients showing the highest cholesterol-enriched domain abundance exhibited the highest number of RBCs with ceramide-enriched patches, compatible with RBC maturation defects, whereas patient RBCs exhibiting the highest spectrin membrane density showed the strongest loss of RBC projected surface area and the lowest abundance of sphingomyelin-enriched domains, consistent with RBC membrane alterations. Our study indicated that abnormal RBCs were associated with lipid distribution and cytoskeleton impairments, which appeared to result from both RBC maturation defects and membrane alterations. Moreover, the extent of lipid distribution alteration is well correlated with laboratory parameters typically altered in neuroacanthocytosis and could present an added value in neuroacanthocytosis syndrome evaluation.
000277981 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000277981 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000277981 650_7 $$2Other$$aacanthocytes
000277981 650_7 $$2Other$$aceramide
000277981 650_7 $$2Other$$acholesterol
000277981 650_7 $$2Other$$aerythrocyte maturation
000277981 650_7 $$2Other$$alipid domains
000277981 650_7 $$2Other$$amicrofluidics
000277981 650_7 $$2Other$$aspectrin cytoskeleton
000277981 650_7 $$2Other$$asphingomyelin
000277981 7001_ $$aGhodsi, Marine$$b1
000277981 7001_ $$aStommen, Amaury$$b2
000277981 7001_ $$aRecktenwald, Steffen M$$b3
000277981 7001_ $$aKaestner, Lars$$b4
000277981 7001_ $$0P:(DE-2719)2810712$$aDanek, Adrian$$b5$$udzne
000277981 7001_ $$aSpranger, Adrian$$b6
000277981 7001_ $$0P:(DE-2719)2811732$$aHermann, Andreas$$b7$$udzne
000277981 7001_ $$0P:(DE-2719)9000983$$aPeikert, Kevin$$b8
000277981 7001_ $$aTyteca, Donatienne$$b9
000277981 773__ $$0PERI:(DE-600)2564217-0$$a10.3389/fphys.2025.1543812$$gVol. 16, p. 1543812$$p1543812$$tFrontiers in physiology$$v16$$x1664-042X$$y2025
000277981 8564_ $$uhttps://pub.dzne.de/record/277981/files/DZNE-2025-00513.pdf$$yOpenAccess
000277981 8564_ $$uhttps://pub.dzne.de/record/277981/files/DZNE-2025-00513.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000277981 909CO $$ooai:pub.dzne.de:277981$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000277981 9101_ $$0I:(DE-HGF)0$$6P:(DE-2719)2810712$$aExternal Institute$$b5$$kExtern
000277981 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811732$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000277981 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000983$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000277981 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000277981 9141_ $$y2025
000277981 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-11
000277981 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000277981 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYSIOL : 2022$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-01-12T09:10:26Z
000277981 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-01-12T09:10:26Z
000277981 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000277981 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-01-12T09:10:26Z
000277981 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-11
000277981 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-11
000277981 9201_ $$0I:(DE-2719)1511100$$kAG Hermann$$lTranslational Neurodegeneration$$x0
000277981 980__ $$ajournal
000277981 980__ $$aVDB
000277981 980__ $$aUNRESTRICTED
000277981 980__ $$aI:(DE-2719)1511100
000277981 9801_ $$aFullTexts