| Home > Publications Database > Detection of focal cortical dysplasia: Development and multicentric evaluation of artificial intelligence models. > print |
| 001 | 278020 | ||
| 005 | 20250430100242.0 | ||
| 024 | 7 | _ | |a 10.1111/epi.18240 |2 doi |
| 024 | 7 | _ | |a pmid:39739580 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC11997906 |2 pmc |
| 024 | 7 | _ | |a 0013-9580 |2 ISSN |
| 024 | 7 | _ | |a 1528-1167 |2 ISSN |
| 037 | _ | _ | |a DZNE-2025-00530 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Kersting, Lennart N |0 0009-0002-1983-4892 |b 0 |
| 245 | _ | _ | |a Detection of focal cortical dysplasia: Development and multicentric evaluation of artificial intelligence models. |
| 260 | _ | _ | |a Oxford [u.a.] |c 2025 |b Wiley-Blackwell |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1744812069_30974 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Focal cortical dysplasia (FCD) is a common cause of drug-resistant focal epilepsy but can be challenging to detect visually on magnetic resonance imaging. Three artificial intelligence models for automated FCD detection are publicly available (MAP18, deepFCD, MELD) but have only been compared on single-center data. Our first objective is to compare them on independent multicenter test data. Additionally, we train and compare three new models and make them publicly available.We retrospectively collected FCD cases from four epilepsy centers. We chose three novel models that take two-dimensional (2D) slices (2D-nnUNet), 2.5D slices (FastSurferCNN), and large 3D patches (3D-nnUNet) as inputs and trained them on a subset of Bonn data. As core evaluation metrics, we used voxel-level Dice similarity coefficient (DSC), cluster-level F1 score, subject-level detection rate, and specificity.We collected 329 subjects, 244 diagnosed with FCD (27.7 ± 14.4 years old, 54% male) and 85 healthy controls (7.1 ± 2.4 years old, 51% female). We used 118 subjects for model training and kept the remaining subjects as an independent test set. 3D-nnUNet achieved the highest F1 score of .58, the highest DSC of .36 (95% confidence interval [CI] = .30-.41), a detection rate of 55%, and a specificity of 86%. deepFCD showed the highest detection rate (82%) but had the lowest specificity (0%) and cluster-level precision (.03, 95% CI = .03-.04, F1 score = .07). MELD showed the least performance variation across centers, with detection rates between 46% and 54%.This study shows the variance in performance for FCD detection models in a multicenter dataset. The two models with 3D input data showed the highest sensitivity. The 2D models performed worse than all other models, suggesting that FCD detection requires 3D data. The greatly improved precision of 3D-nnUNet may make it a sensible choice to aid FCD detection. |
| 536 | _ | _ | |a 353 - Clinical and Health Care Research (POF4-353) |0 G:(DE-HGF)POF4-353 |c POF4-353 |f POF IV |x 0 |
| 536 | _ | _ | |a 354 - Disease Prevention and Healthy Aging (POF4-354) |0 G:(DE-HGF)POF4-354 |c POF4-354 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
| 650 | _ | 7 | |a MRI |2 Other |
| 650 | _ | 7 | |a computer‐aided detection |2 Other |
| 650 | _ | 7 | |a epilepsy |2 Other |
| 650 | _ | 7 | |a lesion detection |2 Other |
| 650 | _ | 7 | |a model comparison |2 Other |
| 650 | _ | 2 | |a Humans |2 MeSH |
| 650 | _ | 2 | |a Male |2 MeSH |
| 650 | _ | 2 | |a Female |2 MeSH |
| 650 | _ | 2 | |a Malformations of Cortical Development: diagnostic imaging |2 MeSH |
| 650 | _ | 2 | |a Adult |2 MeSH |
| 650 | _ | 2 | |a Magnetic Resonance Imaging: methods |2 MeSH |
| 650 | _ | 2 | |a Retrospective Studies |2 MeSH |
| 650 | _ | 2 | |a Young Adult |2 MeSH |
| 650 | _ | 2 | |a Child |2 MeSH |
| 650 | _ | 2 | |a Artificial Intelligence |2 MeSH |
| 650 | _ | 2 | |a Adolescent |2 MeSH |
| 650 | _ | 2 | |a Imaging, Three-Dimensional |2 MeSH |
| 650 | _ | 2 | |a Focal Cortical Dysplasia |2 MeSH |
| 700 | 1 | _ | |a Walger, Lennart |0 0000-0002-3300-6877 |b 1 |
| 700 | 1 | _ | |a Bauer, Tobias |0 P:(DE-2719)9002598 |b 2 |
| 700 | 1 | _ | |a Gnatkovsky, Vadym |b 3 |
| 700 | 1 | _ | |a Schuch, Fabiane |b 4 |
| 700 | 1 | _ | |a David, Bastian |0 P:(DE-2719)9001570 |b 5 |
| 700 | 1 | _ | |a Neuhaus, Elisabeth |b 6 |
| 700 | 1 | _ | |a Keil, Fee |b 7 |
| 700 | 1 | _ | |a Tietze, Anna |b 8 |
| 700 | 1 | _ | |a Rosenow, Felix |b 9 |
| 700 | 1 | _ | |a Kaindl, Angela M |0 0000-0001-9454-206X |b 10 |
| 700 | 1 | _ | |a Hattingen, Elke |b 11 |
| 700 | 1 | _ | |a Huppertz, Hans-Jürgen |b 12 |
| 700 | 1 | _ | |a Radbruch, Alexander |0 P:(DE-2719)9001861 |b 13 |u dzne |
| 700 | 1 | _ | |a Surges, Rainer |b 14 |
| 700 | 1 | _ | |a Rüber, Theodor |0 0000-0002-6180-7671 |b 15 |e Last author |
| 773 | _ | _ | |a 10.1111/epi.18240 |g Vol. 66, no. 4, p. epi.18240 |0 PERI:(DE-600)2002194-X |n 4 |p 1165 - 1176 |t Epilepsia |v 66 |y 2025 |x 0013-9580 |
| 856 | 4 | _ | |y OpenAccess |u https://pub.dzne.de/record/278020/files/DZNE-2025-00530.pdf |
| 856 | 4 | _ | |y OpenAccess |x pdfa |u https://pub.dzne.de/record/278020/files/DZNE-2025-00530.pdf?subformat=pdfa |
| 909 | C | O | |o oai:pub.dzne.de:278020 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 2 |6 P:(DE-2719)9002598 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 13 |6 P:(DE-2719)9001861 |
| 910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 15 |6 0000-0002-6180-7671 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-353 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Clinical and Health Care Research |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-354 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Prevention and Healthy Aging |x 1 |
| 914 | 1 | _ | |y 2025 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-09 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b EPILEPSIA : 2022 |d 2024-12-09 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0 |0 LIC:(DE-HGF)CCBYNC4 |2 HGFVOC |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-09 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-09 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-09 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-09 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b EPILEPSIA : 2022 |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2024-12-09 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-09 |
| 920 | 1 | _ | |0 I:(DE-2719)5000075 |k AG Radbruch |l Clinical Neuroimaging |x 0 |
| 920 | 1 | _ | |0 I:(DE-2719)1013026 |k AG Stöcker |l MR Physics |x 1 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-2719)5000075 |
| 980 | _ | _ | |a I:(DE-2719)1013026 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|