001     278020
005     20250430100242.0
024 7 _ |a 10.1111/epi.18240
|2 doi
024 7 _ |a pmid:39739580
|2 pmid
024 7 _ |a pmc:PMC11997906
|2 pmc
024 7 _ |a 0013-9580
|2 ISSN
024 7 _ |a 1528-1167
|2 ISSN
037 _ _ |a DZNE-2025-00530
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kersting, Lennart N
|0 0009-0002-1983-4892
|b 0
245 _ _ |a Detection of focal cortical dysplasia: Development and multicentric evaluation of artificial intelligence models.
260 _ _ |a Oxford [u.a.]
|c 2025
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744812069_30974
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Focal cortical dysplasia (FCD) is a common cause of drug-resistant focal epilepsy but can be challenging to detect visually on magnetic resonance imaging. Three artificial intelligence models for automated FCD detection are publicly available (MAP18, deepFCD, MELD) but have only been compared on single-center data. Our first objective is to compare them on independent multicenter test data. Additionally, we train and compare three new models and make them publicly available.We retrospectively collected FCD cases from four epilepsy centers. We chose three novel models that take two-dimensional (2D) slices (2D-nnUNet), 2.5D slices (FastSurferCNN), and large 3D patches (3D-nnUNet) as inputs and trained them on a subset of Bonn data. As core evaluation metrics, we used voxel-level Dice similarity coefficient (DSC), cluster-level F1 score, subject-level detection rate, and specificity.We collected 329 subjects, 244 diagnosed with FCD (27.7 ± 14.4 years old, 54% male) and 85 healthy controls (7.1 ± 2.4 years old, 51% female). We used 118 subjects for model training and kept the remaining subjects as an independent test set. 3D-nnUNet achieved the highest F1 score of .58, the highest DSC of .36 (95% confidence interval [CI] = .30-.41), a detection rate of 55%, and a specificity of 86%. deepFCD showed the highest detection rate (82%) but had the lowest specificity (0%) and cluster-level precision (.03, 95% CI = .03-.04, F1 score = .07). MELD showed the least performance variation across centers, with detection rates between 46% and 54%.This study shows the variance in performance for FCD detection models in a multicenter dataset. The two models with 3D input data showed the highest sensitivity. The 2D models performed worse than all other models, suggesting that FCD detection requires 3D data. The greatly improved precision of 3D-nnUNet may make it a sensible choice to aid FCD detection.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a MRI
|2 Other
650 _ 7 |a computer‐aided detection
|2 Other
650 _ 7 |a epilepsy
|2 Other
650 _ 7 |a lesion detection
|2 Other
650 _ 7 |a model comparison
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Malformations of Cortical Development: diagnostic imaging
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Retrospective Studies
|2 MeSH
650 _ 2 |a Young Adult
|2 MeSH
650 _ 2 |a Child
|2 MeSH
650 _ 2 |a Artificial Intelligence
|2 MeSH
650 _ 2 |a Adolescent
|2 MeSH
650 _ 2 |a Imaging, Three-Dimensional
|2 MeSH
650 _ 2 |a Focal Cortical Dysplasia
|2 MeSH
700 1 _ |a Walger, Lennart
|0 0000-0002-3300-6877
|b 1
700 1 _ |a Bauer, Tobias
|0 P:(DE-2719)9002598
|b 2
700 1 _ |a Gnatkovsky, Vadym
|b 3
700 1 _ |a Schuch, Fabiane
|b 4
700 1 _ |a David, Bastian
|0 P:(DE-2719)9001570
|b 5
700 1 _ |a Neuhaus, Elisabeth
|b 6
700 1 _ |a Keil, Fee
|b 7
700 1 _ |a Tietze, Anna
|b 8
700 1 _ |a Rosenow, Felix
|b 9
700 1 _ |a Kaindl, Angela M
|0 0000-0001-9454-206X
|b 10
700 1 _ |a Hattingen, Elke
|b 11
700 1 _ |a Huppertz, Hans-Jürgen
|b 12
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 13
|u dzne
700 1 _ |a Surges, Rainer
|b 14
700 1 _ |a Rüber, Theodor
|0 0000-0002-6180-7671
|b 15
|e Last author
773 _ _ |a 10.1111/epi.18240
|g Vol. 66, no. 4, p. epi.18240
|0 PERI:(DE-600)2002194-X
|n 4
|p 1165 - 1176
|t Epilepsia
|v 66
|y 2025
|x 0013-9580
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/278020/files/DZNE-2025-00530.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/278020/files/DZNE-2025-00530.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:278020
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002598
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)9001861
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 0000-0002-6180-7671
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-09
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EPILEPSIA : 2022
|d 2024-12-09
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-09
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-09
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-09
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EPILEPSIA : 2022
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 0
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000075
980 _ _ |a I:(DE-2719)1013026
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21