001     278048
005     20250504001219.0
024 7 _ |a 10.1021/acsnano.4c17011
|2 doi
024 7 _ |a pmid:40180319
|2 pmid
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a altmetric:175840239
|2 altmetric
037 _ _ |a DZNE-2025-00554
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Khalin, Igor
|0 0000-0003-1041-5747
|b 0
245 _ _ |a Nanocarrier Drug Release and Blood-Brain Barrier Penetration at Post-Stroke Microthrombi Monitored by Real-Time Förster Resonance Energy Transfer.
260 _ _ |a Washington, DC
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1745414765_24913
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nanotechnology holds great promise for improving the delivery of therapeutics to the brain. However, current approaches often operate at the organ or tissue level and are limited by the lack of tools to dynamically monitor cargo delivery in vivo. We have developed highly fluorescent lipid nanodroplets (LNDs) that enable tracking of nanocarrier behavior at the subcellular level while also carrying a Förster resonance energy transfer (FRET)-based drug delivery detection system (FedEcs) capable of monitoring cargo release in vivo. Using two-photon microscopy, we demonstrate that circulating LNDs in naïve mouse brain vasculature exhibit 3D real-time FRET changes, showing size-dependent stability over 2 h in blood circulation. Further, in the Nanostroke model, dynamic intravital two-photon imaging revealed that LNDs accumulated within cerebral postischemic microthrombi, where they released their cargo significantly faster than in normal blood circulation. Furthermore, the blood-brain barrier (BBB) became permeable at the microclot sites thereby allowing accumulated FedEcs-LNDs to cross the BBB and deliver their cargo to the brain parenchyma. This microthrombi-associated translocation was confirmed at the ultrastructural level via volume-correlative light-electron microscopy. Consequently, FedEcs represents an advanced tool to quantitatively study the biodistribution and cargo release of nanocarriers at high resolution in real-time. By enabling us to resolve passive targeting mechanisms poststroke, specifically, accumulation, degradation, and extravasation via poststroke microthrombi, this system could significantly enhance the translational validation of nanocarriers for future treatments of brain diseases.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a blood-brain barrier
|2 Other
650 _ 7 |a correlative light-electron microscopy
|2 Other
650 _ 7 |a microthrombosis
|2 Other
650 _ 7 |a nanocarriers
|2 Other
650 _ 7 |a stroke
|2 Other
650 _ 7 |a Drug Carriers
|2 NLM Chemicals
650 _ 7 |a Lipids
|2 NLM Chemicals
650 _ 2 |a Blood-Brain Barrier: metabolism
|2 MeSH
650 _ 2 |a Blood-Brain Barrier: drug effects
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Fluorescence Resonance Energy Transfer
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Drug Carriers: chemistry
|2 MeSH
650 _ 2 |a Stroke: drug therapy
|2 MeSH
650 _ 2 |a Stroke: metabolism
|2 MeSH
650 _ 2 |a Drug Liberation
|2 MeSH
650 _ 2 |a Nanoparticles: chemistry
|2 MeSH
650 _ 2 |a Lipids: chemistry
|2 MeSH
650 _ 2 |a Thrombosis: drug therapy
|2 MeSH
650 _ 2 |a Thrombosis: metabolism
|2 MeSH
650 _ 2 |a Mice, Inbred C57BL
|2 MeSH
693 _ _ |0 EXP:(DE-2719)LMF-20190308
|5 EXP:(DE-2719)LMF-20190308
|e Light Microscope Facility (CRFS-LMF) / Bonn
|x 0
700 1 _ |a Adarsh, Nagappanpillai
|b 1
700 1 _ |a Schifferer, Martina
|0 P:(DE-2719)2812260
|b 2
|u dzne
700 1 _ |a Wehn, Antonia
|b 3
700 1 _ |a Boide-Trujillo, Valeria J
|b 4
700 1 _ |a Mamrak, Uta
|b 5
700 1 _ |a Shrouder, Joshua
|b 6
700 1 _ |a Misgeld, Thomas
|0 P:(DE-2719)2810727
|b 7
|u dzne
700 1 _ |a Filser, Severin
|0 P:(DE-2719)2810523
|b 8
|e Last author
|u dzne
700 1 _ |a Klymchenko, Andrey S
|0 0000-0002-2423-830X
|b 9
700 1 _ |a Plesnila, Nikolaus
|b 10
773 _ _ |a 10.1021/acsnano.4c17011
|g Vol. 19, no. 15, p. 14780 - 14794
|0 PERI:(DE-600)2383064-5
|n 15
|p 14780 - 14794
|t ACS nano
|v 19
|y 2025
|x 1936-0851
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/278048/files/DZNE-2025-00554.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/278048/files/DZNE-2025-00554.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:278048
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812260
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810727
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2810523
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2022
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1110000-4
|k AG Misgeld
|l Neuronal Cell Biology
|x 0
920 1 _ |0 I:(DE-2719)1040180
|k LMF
|l Light Microscopy Facility (CRFS-LMF)
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1110000-4
980 _ _ |a I:(DE-2719)1040180
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21