000278572 001__ 278572
000278572 005__ 20250601001321.0
000278572 0247_ $$2doi$$a10.1038/s41596-024-01085-w
000278572 0247_ $$2pmid$$apmid:39672917
000278572 0247_ $$2ISSN$$a1754-2189
000278572 0247_ $$2ISSN$$a1750-2799
000278572 0247_ $$2altmetric$$aaltmetric:171943474
000278572 037__ $$aDZNE-2025-00605
000278572 041__ $$aEnglish
000278572 082__ $$a610
000278572 1001_ $$0P:(DE-2719)2810822$$aKoch, Alexandra$$b0$$eFirst author$$udzne
000278572 245__ $$aVersatile MRI acquisition and processing protocol for population-based neuroimaging.
000278572 260__ $$aBasingstoke$$bNature Publishing Group$$c2025
000278572 3367_ $$2DRIVER$$aarticle
000278572 3367_ $$2DataCite$$aOutput Types/Journal article
000278572 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748428199_17431$$xReview Article
000278572 3367_ $$2BibTeX$$aARTICLE
000278572 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278572 3367_ $$00$$2EndNote$$aJournal Article
000278572 520__ $$aNeuroimaging has an essential role in studies of brain health and of cerebrovascular and neurodegenerative diseases, requiring the availability of versatile magnetic resonance imaging (MRI) acquisition and processing protocols. We designed and developed a multipurpose high-resolution MRI protocol for large-scale and long-term population neuroimaging studies that includes structural, diffusion-weighted and functional MRI modalities. This modular protocol takes almost 1 h of scan time and is, apart from a concluding abdominal scan, entirely dedicated to the brain. The protocol links the acquisition of an extensive set of MRI contrasts directly to the corresponding fully automated data processing pipelines and to the required quality assurance of the MRI data and of the image-derived phenotypes. Since its successful implementation in the population-based Rhineland Study (ongoing, currently more than 11,000 participants, target participant number of 20,000), the proposed MRI protocol has proved suitable for epidemiological and clinical cross-sectional and longitudinal studies, including multisite studies. The approach requires expertise in magnetic resonance image acquisition, in computer science for the data management and the execution of processing pipelines, and in brain anatomy for the quality assessment of the MRI data. The protocol takes ~1 h of MRI acquisition and ~20 h of data processing to complete for a single dataset, but parallelization over multiple datasets using high-performance computing resources reduces the processing time. By making the protocol, MRI sequences and pipelines available, we aim to contribute to better comparability, interoperability and reusability of large-scale neuroimaging data.
000278572 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000278572 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000278572 650_2 $$2MeSH$$aHumans
000278572 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000278572 650_2 $$2MeSH$$aNeuroimaging: methods
000278572 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000278572 650_2 $$2MeSH$$aBrain: diagnostic imaging
000278572 693__ $$0EXP:(DE-2719)Rhineland Study-20190321$$5EXP:(DE-2719)Rhineland Study-20190321$$eRhineland Study / Bonn$$x0
000278572 7001_ $$0P:(DE-2719)2810697$$aStirnberg, Rüdiger$$b1
000278572 7001_ $$0P:(DE-2719)2812449$$aEstrada, Santiago$$b2
000278572 7001_ $$0P:(DE-2719)9000827$$aZeng, Weiyi$$b3$$udzne
000278572 7001_ $$0P:(DE-2719)2811856$$aLohner, Valerie$$b4
000278572 7001_ $$0P:(DE-2719)2811036$$aShahid, Mohammad$$b5$$udzne
000278572 7001_ $$0P:(DE-2719)2812222$$aEhses, Philipp$$b6
000278572 7001_ $$0P:(DE-2719)2810559$$aPracht, Eberhard D$$b7
000278572 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b8
000278572 7001_ $$0P:(DE-2719)2810538$$aStöcker, Tony$$b9
000278572 7001_ $$0P:(DE-2719)2810403$$aBreteler, Monique M B$$b10$$eLast author
000278572 773__ $$0PERI:(DE-600)2244966-8$$a10.1038/s41596-024-01085-w$$gVol. 20, no. 5, p. 1223 - 1245$$n5$$p1223 - 1245$$tNature protocols$$v20$$x1754-2189$$y2025
000278572 8564_ $$uhttps://pub.dzne.de/record/278572/files/DZNE-2025-00605_Restricted.pdf
000278572 8564_ $$uhttps://pub.dzne.de/record/278572/files/DZNE-2025-00605_Restricted.pdf?subformat=pdfa$$xpdfa
000278572 909CO $$ooai:pub.dzne.de:278572$$pVDB
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810822$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b0$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810697$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812449$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9000827$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811856$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811036$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b5$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812222$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b6$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810559$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812134$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b8$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810538$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b9$$kDZNE
000278572 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810403$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b10$$kDZNE
000278572 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000278572 9141_ $$y2025
000278572 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-18$$wger
000278572 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2024-12-18$$wger
000278572 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PROTOC : 2022$$d2024-12-18
000278572 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT PROTOC : 2022$$d2024-12-18
000278572 9201_ $$0I:(DE-2719)1012001$$kAG Breteler$$lPopulation Health Sciences$$x0
000278572 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x1
000278572 9201_ $$0I:(DE-2719)1040310$$kAG Reuter$$lArtificial Intelligence in Medicine$$x2
000278572 980__ $$ajournal
000278572 980__ $$aVDB
000278572 980__ $$aI:(DE-2719)1012001
000278572 980__ $$aI:(DE-2719)1013026
000278572 980__ $$aI:(DE-2719)1040310
000278572 980__ $$aUNRESTRICTED