001     278572
005     20250601001321.0
024 7 _ |a 10.1038/s41596-024-01085-w
|2 doi
024 7 _ |a pmid:39672917
|2 pmid
024 7 _ |a 1754-2189
|2 ISSN
024 7 _ |a 1750-2799
|2 ISSN
024 7 _ |a altmetric:171943474
|2 altmetric
037 _ _ |a DZNE-2025-00605
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Koch, Alexandra
|0 P:(DE-2719)2810822
|b 0
|e First author
|u dzne
245 _ _ |a Versatile MRI acquisition and processing protocol for population-based neuroimaging.
260 _ _ |a Basingstoke
|c 2025
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748428199_17431
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuroimaging has an essential role in studies of brain health and of cerebrovascular and neurodegenerative diseases, requiring the availability of versatile magnetic resonance imaging (MRI) acquisition and processing protocols. We designed and developed a multipurpose high-resolution MRI protocol for large-scale and long-term population neuroimaging studies that includes structural, diffusion-weighted and functional MRI modalities. This modular protocol takes almost 1 h of scan time and is, apart from a concluding abdominal scan, entirely dedicated to the brain. The protocol links the acquisition of an extensive set of MRI contrasts directly to the corresponding fully automated data processing pipelines and to the required quality assurance of the MRI data and of the image-derived phenotypes. Since its successful implementation in the population-based Rhineland Study (ongoing, currently more than 11,000 participants, target participant number of 20,000), the proposed MRI protocol has proved suitable for epidemiological and clinical cross-sectional and longitudinal studies, including multisite studies. The approach requires expertise in magnetic resonance image acquisition, in computer science for the data management and the execution of processing pipelines, and in brain anatomy for the quality assessment of the MRI data. The protocol takes ~1 h of MRI acquisition and ~20 h of data processing to complete for a single dataset, but parallelization over multiple datasets using high-performance computing resources reduces the processing time. By making the protocol, MRI sequences and pipelines available, we aim to contribute to better comparability, interoperability and reusability of large-scale neuroimaging data.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Neuroimaging: methods
|2 MeSH
650 _ 2 |a Image Processing, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Brain: diagnostic imaging
|2 MeSH
693 _ _ |0 EXP:(DE-2719)Rhineland Study-20190321
|5 EXP:(DE-2719)Rhineland Study-20190321
|e Rhineland Study / Bonn
|x 0
700 1 _ |a Stirnberg, Rüdiger
|0 P:(DE-2719)2810697
|b 1
700 1 _ |a Estrada, Santiago
|0 P:(DE-2719)2812449
|b 2
700 1 _ |a Zeng, Weiyi
|0 P:(DE-2719)9000827
|b 3
|u dzne
700 1 _ |a Lohner, Valerie
|0 P:(DE-2719)2811856
|b 4
700 1 _ |a Shahid, Mohammad
|0 P:(DE-2719)2811036
|b 5
|u dzne
700 1 _ |a Ehses, Philipp
|0 P:(DE-2719)2812222
|b 6
700 1 _ |a Pracht, Eberhard D
|0 P:(DE-2719)2810559
|b 7
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 8
700 1 _ |a Stöcker, Tony
|0 P:(DE-2719)2810538
|b 9
700 1 _ |a Breteler, Monique M B
|0 P:(DE-2719)2810403
|b 10
|e Last author
773 _ _ |a 10.1038/s41596-024-01085-w
|g Vol. 20, no. 5, p. 1223 - 1245
|0 PERI:(DE-600)2244966-8
|n 5
|p 1223 - 1245
|t Nature protocols
|v 20
|y 2025
|x 1754-2189
856 4 _ |u https://pub.dzne.de/record/278572/files/DZNE-2025-00605_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/278572/files/DZNE-2025-00605_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |o oai:pub.dzne.de:278572
|p VDB
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)2810822
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2810697
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812449
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9000827
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811856
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2811036
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2812222
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810559
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2812134
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2810538
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2810403
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
914 1 _ |y 2025
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2024-12-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PROTOC : 2022
|d 2024-12-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT PROTOC : 2022
|d 2024-12-18
920 1 _ |0 I:(DE-2719)1012001
|k AG Breteler
|l Population Health Sciences
|x 0
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 1
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1012001
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21