001     278911
005     20250604100731.0
024 7 _ |a 10.3390/ijms26104735
|2 doi
024 7 _ |a pmid:40429881
|2 pmid
024 7 _ |a pmc:PMC12112180
|2 pmc
024 7 _ |a 1422-0067
|2 ISSN
024 7 _ |a 1661-6596
|2 ISSN
037 _ _ |a DZNE-2025-00637
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Bauch, Anne
|b 0
245 _ _ |a Prognostic Value of a Multivariate Gut Microbiome Model for Progression from Normal Cognition to Mild Cognitive Impairment Within 4 Years.
260 _ _ |a Basel
|c 2025
|b Molecular Diversity Preservation International
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1748613647_7947
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Little is known about the dysbiosis of the gut microbiome in patients with mild cognitive impairment (MCI) potentially at risk for the development of Alzheimer's disease (AD). So far, only cross-sectional differences and not longitudinal changes and their prognostic significance have been in the scope of research in MCI. Therefore, we investigated the ability of longitudinal taxonomic and functional gut microbiome data from 100 healthy controls (HC) to predict the progression from normal cognition to MCI over a 4-year follow-up period (4yFU). Logistic regression models were built with baseline features that best discriminated between the two groups using an ANOVA-type statistical analysis. The best model for the discrimination of MCI converters was based on functional data using Gene Ontology (GO), which included 14 features. This model achieved an area under the receiver operating characteristic curve (AUROC) of 0.84 at baseline, 0.78 at the 1-year follow-up (1yFU), and 0.75 at 4yFU. This functional model outperformed the taxonomic model, which included 38 genera features, in terms of descriptive performance and showed comparable efficacy to combined analyses integrating functional, taxonomic, and clinical characteristics. Thus, gut microbiome algorithms have the potential to predict MCI conversion in HCs over a 4-year period, offering a promising innovative supplement for early AD identification.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alzheimer’s disease
|2 Other
650 _ 7 |a gut microbiome
|2 Other
650 _ 7 |a longitudinal observational study
|2 Other
650 _ 7 |a mild cognitive impairment
|2 Other
650 _ 7 |a prediction model
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: microbiology
|2 MeSH
650 _ 2 |a Cognitive Dysfunction: diagnosis
|2 MeSH
650 _ 2 |a Gastrointestinal Microbiome
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Prognosis
|2 MeSH
650 _ 2 |a Disease Progression
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
650 _ 2 |a Cognition
|2 MeSH
650 _ 2 |a Alzheimer Disease: microbiology
|2 MeSH
650 _ 2 |a ROC Curve
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
700 1 _ |a Baur, Julia
|b 1
700 1 _ |a Honold, Iris
|b 2
700 1 _ |a Willmann, Matthias
|b 3
700 1 _ |a Weber, Greta Louise
|b 4
700 1 _ |a Müller, Stephan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sodenkamp, Sebastian
|0 P:(DE-2719)9003152
|b 6
|u dzne
700 1 _ |a Peter, Silke
|b 7
700 1 _ |a Schoppmeier, Ulrich
|0 0009-0004-0769-6845
|b 8
700 1 _ |a Laske, Christoph
|0 P:(DE-2719)2000055
|b 9
|e Last author
|u dzne
770 _ _ |a Molecular Research in Human Microbiome 2.0
773 _ _ |a 10.3390/ijms26104735
|g Vol. 26, no. 10, p. 4735 -
|0 PERI:(DE-600)2019364-6
|n 10
|p 4735
|t International journal of molecular sciences
|v 26
|y 2025
|x 1422-0067
856 4 _ |u https://pub.dzne.de/record/278911/files/DZNE-2025-00637.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/278911/files/DZNE-2025-00637.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:278911
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9003152
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2000055
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 1 _ |0 I:(DE-2719)1210000
|k AG Gasser
|l Parkinson Genetics
|x 0
920 1 _ |0 I:(DE-2719)1240005
|k ICRU
|l Core ICRU
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210000
980 _ _ |a I:(DE-2719)1240005
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21