001     278929
005     20250606100749.0
024 7 _ |a 10.1002/advs.202412373
|2 doi
024 7 _ |a pmid:40304297
|2 pmid
024 7 _ |a pmc:PMC12120740
|2 pmc
037 _ _ |a DZNE-2025-00655
041 _ _ |a English
082 _ _ |a 624
100 1 _ |a Emery, Brett Addison
|0 P:(DE-2719)9001361
|b 0
|e First author
|u dzne
245 _ _ |a MEA-seqX: High-Resolution Profiling of Large-Scale Electrophysiological and Transcriptional Network Dynamics.
260 _ _ |a Weinheim
|c 2025
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749116783_15769
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Concepts of brain function imply congruence and mutual causal influence between molecular events and neuronal activity. Decoding entangled information from concurrent molecular and electrophysiological network events demands innovative methodology bridging scales and modalities. The MEA-seqX platform, integrating high-density microelectrode arrays, spatial transcriptomics, optical imaging, and advanced computational strategies, enables the simultaneous recording and analysis of molecular and electrical network activities at mesoscale spatial resolution. Applied to a mouse hippocampal model of experience-dependent plasticity, MEA-seqX unveils massively enhanced nested dynamics between transcription and function. Graph-theoretic analysis reveals an increase in densely connected bimodal hubs, marking the first observation of coordinated hippocampal circuitry dynamics at molecular and functional levels. This platform also identifies different cell types based on their distinct bimodal profiles. Machine-learning algorithms accurately predict network-wide electrophysiological activity features from spatial gene expression, demonstrating a previously inaccessible convergence across modalities, time, and scales.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a AI machine‐learning
|2 Other
650 _ 7 |a connectome
|2 Other
650 _ 7 |a experience‐dependent plasticity
|2 Other
650 _ 7 |a large‐scale neural recordings
|2 Other
650 _ 7 |a predictive modeling
|2 Other
650 _ 7 |a spatial transcriptomics
|2 Other
650 _ 7 |a spatiotemporal dynamics
|2 Other
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Hippocampus: physiology
|2 MeSH
650 _ 2 |a Hippocampus: metabolism
|2 MeSH
650 _ 2 |a Gene Regulatory Networks: genetics
|2 MeSH
650 _ 2 |a Electrophysiological Phenomena: physiology
|2 MeSH
650 _ 2 |a Gene Expression Profiling: methods
|2 MeSH
650 _ 2 |a Neuronal Plasticity: physiology
|2 MeSH
650 _ 2 |a Neurons: physiology
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
700 1 _ |a Hu, Xin
|0 P:(DE-2719)2814182
|b 1
|u dzne
700 1 _ |a Klütsch, Diana
|0 P:(DE-2719)2814292
|b 2
|u dzne
700 1 _ |a Khanzada, Shahrukh
|0 P:(DE-2719)9001867
|b 3
|u dzne
700 1 _ |a Larsson, Ludvig
|b 4
700 1 _ |a Dumitru, Ionut
|b 5
700 1 _ |a Frisén, Jonas
|b 6
700 1 _ |a Lundeberg, Joakim
|b 7
700 1 _ |a Kempermann, Gerd
|0 P:(DE-2719)2000011
|b 8
|u dzne
700 1 _ |a Amin, Hayder
|0 P:(DE-2719)2812628
|b 9
|e Last author
773 _ _ |a 10.1002/advs.202412373
|g Vol. 12, no. 20, p. 2412373
|0 PERI:(DE-600)2808093-2
|n 20
|p 2412373
|t Advanced science
|v 12
|y 2025
|x 2198-3844
856 4 _ |u https://pub.dzne.de/record/278929/files/DZNE-2025-00655%20SUP.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/278929/files/DZNE-2025-00655%20SUP.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/278929/files/DZNE-2025-00655.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/278929/files/DZNE-2025-00655.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:278929
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001361
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2814182
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2814292
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9001867
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2000011
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812628
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-05
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b ADV SCI : 2022
|d 2024-12-05
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV SCI : 2022
|d 2024-12-05
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:05:31Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:05:31Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-05
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 1 _ |0 I:(DE-2719)1710010
|k AG Amin
|l Biohybrid Neuroelectronics (BIONICS)
|x 0
920 1 _ |0 I:(DE-2719)1710001
|k AG Kempermann
|l Adult Neurogenesis
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1710010
980 _ _ |a I:(DE-2719)1710001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21