001     278930
005     20250615001322.0
024 7 _ |a 10.1016/j.media.2025.103623
|2 doi
024 7 _ |a pmid:40367700
|2 pmid
024 7 _ |a 1361-8415
|2 ISSN
024 7 _ |a 1361-8431
|2 ISSN
024 7 _ |a 1361-8423
|2 ISSN
024 7 _ |a altmetric:158519381
|2 altmetric
037 _ _ |a DZNE-2025-00656
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Chatterjee, Soumick
|b 0
245 _ _ |a PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation.
260 _ _ |a Amsterdam [u.a.]
|c 2025
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1749737217_19459
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the domain of medical imaging, many supervised learning based methods for segmentation face several challenges such as high variability in annotations from multiple experts, paucity of labelled data and class imbalanced datasets. These issues may result in segmentations that lack the requisite precision for clinical analysis and can be misleadingly overconfident without associated uncertainty quantification. This work proposes the PULASki method as a computationally efficient generative tool for biomedical image segmentation that accurately captures variability in expert annotations, even in small datasets. This approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure (Probabilistic UNet) , which improves learning of the conditional decoder compared to the standard cross-entropy particularly in class imbalanced problems. The proposed method was analysed for two structurally different segmentation tasks (intracranial vessel and multiple sclerosis (MS) lesion) and compare our results to four well-established baselines in terms of quantitative metrics and qualitative output. These experiments involve class-imbalanced datasets characterised by challenging features, including suboptimal signal-to-noise ratios and high ambiguity. Empirical results demonstrate the PULASKi method outperforms all baselines at the 5% significance level. Our experiments are also of the first to present a comparative study of the computationally feasible segmentation of complex geometries using 3D patches and the traditional use of 2D slices. The generated segmentations are shown to be much more anatomically plausible than in the 2D case, particularly for the vessel task. Our method can also be applied to a wide range of multi-label segmentation tasks and is useful for downstream tasks such as hemodynamic modelling (computational fluid dynamics and data assimilation), clinical decision making, and treatment planning.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Conditional VAE
|2 Other
650 _ 7 |a Distribution distance
|2 Other
650 _ 7 |a Multiple sclerosis segmentation
|2 Other
650 _ 7 |a Probabilistic UNet
|2 Other
650 _ 7 |a Vessel segmentation
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Observer Variation
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging: methods
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Image Interpretation, Computer-Assisted: methods
|2 MeSH
650 _ 2 |a Multiple Sclerosis: diagnostic imaging
|2 MeSH
650 _ 2 |a Supervised Machine Learning
|2 MeSH
700 1 _ |a Gaidzik, Franziska
|b 1
700 1 _ |a Sciarra, Alessandro
|b 2
700 1 _ |a Mattern, Hendrik
|0 P:(DE-2719)9002178
|b 3
|u dzne
700 1 _ |a Janiga, Gábor
|b 4
700 1 _ |a Speck, Oliver
|0 P:(DE-2719)2810706
|b 5
|u dzne
700 1 _ |a Nürnberger, Andreas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pathiraja, Sahani
|b 7
773 _ _ |a 10.1016/j.media.2025.103623
|g Vol. 103, p. 103623 -
|0 PERI:(DE-600)1497450-2
|p 103623
|t Medical image analysis
|v 103
|y 2025
|x 1361-8415
856 4 _ |u https://pub.dzne.de/record/278930/files/DZNE-2025-00656%20SUP.pdf
856 4 _ |u https://pub.dzne.de/record/278930/files/DZNE-2025-00656_Restricted.pdf
856 4 _ |u https://pub.dzne.de/record/278930/files/DZNE-2025-00656%20SUP.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://pub.dzne.de/record/278930/files/DZNE-2025-00656_Restricted.pdf?subformat=pdfa
|x pdfa
909 C O |p VDB
|o oai:pub.dzne.de:278930
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002178
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2810706
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b MED IMAGE ANAL : 2022
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1310010
|k AG Schreiber
|l Mixed Cerebral Pathologies and Cognitive Aging
|x 0
920 1 _ |0 I:(DE-2719)1340009
|k AG Speck
|l Linking Imaging Projects
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1310010
980 _ _ |a I:(DE-2719)1340009
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21