000278931 001__ 278931
000278931 005__ 20250604100732.0
000278931 0247_ $$2doi$$a10.1111/jnc.70094
000278931 0247_ $$2pmid$$apmid:40439020
000278931 0247_ $$2pmc$$apmc:PMC12120816
000278931 0247_ $$2ISSN$$a0022-3042
000278931 0247_ $$2ISSN$$a1471-4159
000278931 037__ $$aDZNE-2025-00657
000278931 041__ $$aEnglish
000278931 082__ $$a610
000278931 1001_ $$00000-0002-8669-0473$$aAngel, Del$$b0
000278931 245__ $$aThe Serine/Threonine Kinase NDR2 Regulates Integrin Signaling, Synapse Formation, and Synaptic Plasticity in the Hippocampus.
000278931 260__ $$aOxford$$bWiley-Blackwell$$c2025
000278931 3367_ $$2DRIVER$$aarticle
000278931 3367_ $$2DataCite$$aOutput Types/Journal article
000278931 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1748947256_11720
000278931 3367_ $$2BibTeX$$aARTICLE
000278931 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000278931 3367_ $$00$$2EndNote$$aJournal Article
000278931 520__ $$aNuclear Dbf2-related (NDR) kinases are core components of the Hippo pathway, which controls neuronal polarity and neurite growth in the central nervous system (CNS). NDR2 is the principal NDR kinase in the mouse CNS, where it has been shown to regulate integrin-dependent dendritic branching as well as growth and plasticity in hippocampal mossy fibers. Given the well-established involvement of integrins in plasticity, we hypothesized that NDR2 might regulate synapse formation and plasticity through integrin-mediated mechanisms. In this study, using constitutive NDR2 null mutant mice, we demonstrate that Ndr2 deficiency leads to a reduction of T788/789 phosphorylated β1 integrin expression at synaptic sites both in the hippocampal area CA1 and in primary hippocampal neurons in vitro. This reduction is associated with decreased synaptic density in both conditions and accompanied by reduced long-term potentiation in the synapses between Schaffer collaterals/commissural fibers and CA1 pyramidal cells, which could be restored by activation of integrins with an arginine-glycine-aspartate-containing peptide, as well as with mild spatial memory deficits. Together, our results suggest that NDR2 is involved in integrin-dependent synapse formation and plasticity in the mouse hippocampus.
000278931 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000278931 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000278931 650_7 $$2Other$$ahippocampus
000278931 650_7 $$2Other$$aintegrin signaling
000278931 650_7 $$2Other$$anuclear DBF2‐related kinase 2
000278931 650_7 $$2Other$$aplasticity
000278931 650_7 $$2Other$$aspatial memory
000278931 650_7 $$2Other$$asynapses
000278931 650_7 $$0EC 2.7.11.1$$2NLM Chemicals$$aProtein Serine-Threonine Kinases
000278931 650_7 $$2NLM Chemicals$$aIntegrins
000278931 650_7 $$2NLM Chemicals$$aIntegrin beta1
000278931 650_2 $$2MeSH$$aAnimals
000278931 650_2 $$2MeSH$$aProtein Serine-Threonine Kinases: genetics
000278931 650_2 $$2MeSH$$aProtein Serine-Threonine Kinases: physiology
000278931 650_2 $$2MeSH$$aProtein Serine-Threonine Kinases: metabolism
000278931 650_2 $$2MeSH$$aNeuronal Plasticity: physiology
000278931 650_2 $$2MeSH$$aSynapses: physiology
000278931 650_2 $$2MeSH$$aMice
000278931 650_2 $$2MeSH$$aHippocampus: cytology
000278931 650_2 $$2MeSH$$aHippocampus: physiology
000278931 650_2 $$2MeSH$$aHippocampus: metabolism
000278931 650_2 $$2MeSH$$aSignal Transduction: physiology
000278931 650_2 $$2MeSH$$aMice, Knockout
000278931 650_2 $$2MeSH$$aMice, Inbred C57BL
000278931 650_2 $$2MeSH$$aCells, Cultured
000278931 650_2 $$2MeSH$$aMale
000278931 650_2 $$2MeSH$$aIntegrins: metabolism
000278931 650_2 $$2MeSH$$aIntegrin beta1: metabolism
000278931 650_2 $$2MeSH$$aNeurons
000278931 7001_ $$aTsutiya, Atsuhiro$$b1
000278931 7001_ $$0P:(DE-2719)2811139$$aHayani, Hussam$$b2
000278931 7001_ $$aMadencioglu, Deniz$$b3
000278931 7001_ $$aKul, Emre$$b4
000278931 7001_ $$aCaliskan, Gürsel$$b5
000278931 7001_ $$aDemiray, Yunus Emre$$b6
000278931 7001_ $$0P:(DE-2719)2810577$$aDityatev, Alexander$$b7
000278931 7001_ $$00000-0003-4285-7507$$aStork, Oliver$$b8
000278931 773__ $$0PERI:(DE-600)2020528-4$$a10.1111/jnc.70094$$gVol. 169, no. 6, p. e70094$$n6$$pe70094$$tJournal of neurochemistry$$v169$$x0022-3042$$y2025
000278931 8564_ $$uhttps://pub.dzne.de/record/278931/files/DZNE-2025-00657.pdf$$yOpenAccess
000278931 8564_ $$uhttps://pub.dzne.de/record/278931/files/DZNE-2025-00657.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000278931 909CO $$ooai:pub.dzne.de:278931$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000278931 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2811139$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000278931 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810577$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b7$$kDZNE
000278931 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000278931 9141_ $$y2025
000278931 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NEUROCHEM : 2022$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-01$$wger
000278931 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000278931 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
000278931 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
000278931 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000278931 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-01$$wger
000278931 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
000278931 9201_ $$0I:(DE-2719)1310007$$kAG Dityatev$$lMolecular Neuroplasticity$$x0
000278931 980__ $$ajournal
000278931 980__ $$aVDB
000278931 980__ $$aUNRESTRICTED
000278931 980__ $$aI:(DE-2719)1310007
000278931 9801_ $$aFullTexts