000279035 001__ 279035
000279035 005__ 20250713001346.0
000279035 0247_ $$2doi$$a10.1002/mrm.30480
000279035 0247_ $$2pmid$$apmid:40079433
000279035 0247_ $$2ISSN$$a1522-2594
000279035 0247_ $$2ISSN$$a0740-3194
000279035 0247_ $$2altmetric$$aaltmetric:175153519
000279035 037__ $$aDZNE-2025-00667
000279035 041__ $$aEnglish
000279035 082__ $$a610
000279035 1001_ $$aKan, Chung$$b0
000279035 245__ $$aT1234: A distortion-matched structural scan solution to misregistration of high resolution fMRI data.
000279035 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2025
000279035 3367_ $$2DRIVER$$aarticle
000279035 3367_ $$2DataCite$$aOutput Types/Journal article
000279035 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1749127833_29143
000279035 3367_ $$2BibTeX$$aARTICLE
000279035 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279035 3367_ $$00$$2EndNote$$aJournal Article
000279035 520__ $$aRegistration of functional and structural data poses a challenge for high-resolution fMRI studies at 7 T. This study aims to develop a rapid acquisition method that provides distortion-matched, artifact-mitigated structural reference data.We introduce an efficient sequence protocol termed T1234, which offers adjustable distortions. This includes data that match distortions of functional data and data that are free of distortions. This approach involves a T1-weighted 2-inversion 3D-EPI sequence with four combinations of read and phase encoding directions optimized for high-resolution fMRI. A forward Bloch model was used for T1 quantification and protocol optimization. Fifteen participants were scanned at 7 T using both structural and functional protocols to evaluate the use of T1234.Results from two protocols are presented. A fast distortion-free protocol reliably produced whole-brain segmentations at 0.8 mm isotropic resolution within 3:00-3:40 min. It demonstrates robustness across sessions, participants, and three different 7 T SIEMENS scanners. For a protocol with geometric distortions that matched functional data, T1234 facilitates layer-specific fMRI signal analysis with enhanced laminar precision.This structural mapping approach enables precise registration with fMRI data. T1234 has been successfully implemented, validated, and tested, and is now available to users at our center and at over 50 centers worldwide.
000279035 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000279035 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000279035 650_7 $$2Other$$a7 T acquisition
000279035 650_7 $$2Other$$aT1 mapping
000279035 650_7 $$2Other$$adistortion
000279035 650_7 $$2Other$$alayer‐fMRI
000279035 650_2 $$2MeSH$$aHumans
000279035 650_2 $$2MeSH$$aMagnetic Resonance Imaging: methods
000279035 650_2 $$2MeSH$$aBrain: diagnostic imaging
000279035 650_2 $$2MeSH$$aArtifacts
000279035 650_2 $$2MeSH$$aAdult
000279035 650_2 $$2MeSH$$aAlgorithms
000279035 650_2 $$2MeSH$$aMale
000279035 650_2 $$2MeSH$$aImage Processing, Computer-Assisted: methods
000279035 650_2 $$2MeSH$$aFemale
000279035 650_2 $$2MeSH$$aImaging, Three-Dimensional: methods
000279035 650_2 $$2MeSH$$aBrain Mapping: methods
000279035 650_2 $$2MeSH$$aReproducibility of Results
000279035 650_2 $$2MeSH$$aYoung Adult
000279035 650_2 $$2MeSH$$aEcho-Planar Imaging
000279035 7001_ $$0P:(DE-2719)2810697$$aStirnberg, Rüdiger$$b1
000279035 7001_ $$aMontequin, Marcela$$b2
000279035 7001_ $$00000-0001-7761-3727$$aGulban, Omer Faruk$$b3
000279035 7001_ $$0P:(DE-HGF)0$$aMorgan, A Tyler$$b4
000279035 7001_ $$00000-0001-9038-4746$$aBandettini, Peter A$$b5
000279035 7001_ $$00000-0002-3291-2202$$aHuber, Laurentius$$b6
000279035 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.30480$$gVol. 94, no. 2, p. 713 - 723$$n2$$p713 - 723$$tMagnetic resonance in medicine$$v94$$x1522-2594$$y2025
000279035 8564_ $$uhttps://pub.dzne.de/record/279035/files/DZNE-2025-00667.pdf$$yOpenAccess
000279035 8564_ $$uhttps://pub.dzne.de/record/279035/files/DZNE-2025-00667.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279035 909CO $$ooai:pub.dzne.de:279035$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000279035 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810697$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b1$$kDZNE
000279035 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000279035 9141_ $$y2025
000279035 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2025-01-02
000279035 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000279035 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2025-01-02$$wger
000279035 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279035 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2025-01-02
000279035 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2025-01-02$$wger
000279035 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
000279035 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x0
000279035 980__ $$ajournal
000279035 980__ $$aVDB
000279035 980__ $$aUNRESTRICTED
000279035 980__ $$aI:(DE-2719)1013026
000279035 9801_ $$aFullTexts