001     279124
005     20250708100956.0
024 7 _ |a 10.1098/rsob.250101
|2 doi
037 _ _ |a DZNE-2025-00684
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Xu, Jishu
|0 P:(DE-2719)9002275
|b 0
245 _ _ |a Unravelling axonal transcriptional landscapes: insights from induced pluripotent stem cell-derived cortical neurons and implications for motor neuron degeneration
260 _ _ |a London
|c 2025
|b Royal Society Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751891780_24568
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment-specific analysis. In this study, we employ a robust RNA-sequencing approach, using microfluidic devices, to generate high-quality axonal transcriptomes from induced pluripotent stem cells-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins, mitochondrial-encoded RNAs and long non-coding RNAs. Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analysed kinesin family member 1C (KIF1C)-knockout (KO) CNs, modelling hereditary spastic paraplegia, a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment-specific disease mechanisms.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a axonal transcriptomics
|2 Other
650 _ 7 |a axonal transport
|2 Other
650 _ 7 |a iPSC-derived neurons
|2 Other
650 _ 7 |a kinesin
|2 Other
650 _ 7 |a neurons
|2 Other
650 _ 7 |a transcription factors
|2 Other
650 _ 7 |a Transcription Factors
|2 NLM Chemicals
650 _ 7 |a Kinesins
|0 EC 3.6.4.4
|2 NLM Chemicals
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Axons: metabolism
|2 MeSH
650 _ 2 |a Motor Neurons: metabolism
|2 MeSH
650 _ 2 |a Motor Neurons: pathology
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Transcriptome
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Transcription Factors: metabolism
|2 MeSH
650 _ 2 |a Kinesins: genetics
|2 MeSH
650 _ 2 |a Kinesins: metabolism
|2 MeSH
650 _ 2 |a Nerve Degeneration: genetics
|2 MeSH
650 _ 2 |a Nerve Degeneration: metabolism
|2 MeSH
700 1 _ |a Hörner, Michaela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Nagel, Maike
|0 P:(DE-2719)2812101
|b 2
700 1 _ |a Perhat, Perwin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Korneck, Milena
|0 P:(DE-2719)9002166
|b 4
700 1 _ |a Noß, Marvin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hauser, Stefan
|0 P:(DE-2719)2810998
|b 6
|u dzne
700 1 _ |a Schöls, Ludger
|0 P:(DE-2719)2810795
|b 7
|u dzne
700 1 _ |a Admard, Jakob
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Nicolas, Casadei
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Schüle-Freyer, Rebecca
|0 P:(DE-2719)2812018
|b 10
|u dzne
773 _ _ |a 10.1098/rsob.250101
|g Vol. 15, no. 6, p. 250101
|0 PERI:(DE-600)2630944-0
|n 6
|p 250101
|t Open biology
|v 15
|y 2025
|x 2046-2441
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279124/files/DZNE-2025-00684.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279124/files/DZNE-2025-00684.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279124
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9002166
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810998
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810795
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-2719)2812018
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b OPEN BIOL : 2022
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-03-15T10:46:58Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-03-15T10:46:58Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-30
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-03-15T10:46:58Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-30
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b OPEN BIOL : 2022
|d 2024-12-30
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-30
920 1 _ |0 I:(DE-2719)1210016
|k AG Hauser
|l Advanced cellular models of neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)5000005
|k AG Schöls
|l Clinical Neurogenetics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1210016
980 _ _ |a I:(DE-2719)5000005
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21