000279186 001__ 279186
000279186 005__ 20250713001425.0
000279186 0247_ $$2doi$$a10.1162/imag_a_00453
000279186 0247_ $$2altmetric$$aaltmetric:173235689
000279186 037__ $$aDZNE-2025-00714
000279186 082__ $$a610
000279186 1001_ $$aChai, Yuhui$$b0
000279186 245__ $$aBlood nulling versus tissue suppression: Enhancing integrated VASO and perfusion (VAPER) contrast for laminar fMRI
000279186 260__ $$aCambridge, MA$$bMIT Press$$c2025
000279186 3367_ $$2DRIVER$$aarticle
000279186 3367_ $$2DataCite$$aOutput Types/Journal article
000279186 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751967400_3176
000279186 3367_ $$2BibTeX$$aARTICLE
000279186 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279186 3367_ $$00$$2EndNote$$aJournal Article
000279186 520__ $$aCerebral blood volume (CBV) and cerebral blood flow (CBF)-based functional magnetic resonance imaging (fMRI) have proven to be more laminar-specific than blood-oxygen-level-dependent (BOLD) contrast fMRI, but they suffer from relatively low sensitivity. In previous work, we integrated CBV and CBF into one contrast using DANTE (Delay Alternating with Nutation for Tailored Excitation) pulse trains combined with 3D echo-planar imaging (EPI) to create an integrated blood volume and perfusion (VAPER)-weighted contrast (Chai et al., 2020). Building on this, we have now introduced a magnetization transfer approach to induce a tissue-suppression-based VASO (vascular space occupancy) effect and incorporated it with the VAPER technique to boost the overall sensitivity while maintaining superior laminar specificity, all without altering the original VAPER sequence timing scheme. This magnetization transfer (MT)–VAPER fMRI acquisition alternates between DANTE blood-nulling and MT-tissue-suppression conditions, generating an integrated VASO and perfusion contrast enhanced by MT. Both theoretical and experimental evaluation demonstrated an approximately 30% enhancement in VAPER sensitivity with MT application. This novel MT–VAPER method was empirically validated in human primary motor and visual cortices, demonstrating its superior laminar specificity and robust reproducibility, establishing it as valuable non-BOLD tool for laminar fMRI in human brain function research.
000279186 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000279186 588__ $$aDataset connected to CrossRef, Journals: pub.dzne.de
000279186 7001_ $$aLi, Linqing$$b1
000279186 7001_ $$0P:(DE-2719)2810697$$aStirnberg, Rüdiger$$b2$$udzne
000279186 7001_ $$aHuber, Laurentius$$b3
000279186 7001_ $$0P:(DE-2719)2810538$$aStöcker, Tony$$b4$$udzne
000279186 7001_ $$aBandettini, Peter A.$$b5
000279186 7001_ $$aSutton, Bradley P.$$b6
000279186 773__ $$0PERI:(DE-600)3167925-0$$a10.1162/imag_a_00453$$gVol. 3, p. imag_a_00453$$pimag_a_00453$$tImaging neuroscience$$v3$$x2837-6056$$y2025
000279186 8564_ $$uhttps://pub.dzne.de/record/279186/files/DZNE-2025-00714%20SUP.pdf
000279186 8564_ $$uhttps://pub.dzne.de/record/279186/files/DZNE-2025-00714.pdf$$yOpenAccess
000279186 8564_ $$uhttps://pub.dzne.de/record/279186/files/DZNE-2025-00714%20SUP.pdf?subformat=pdfa$$xpdfa
000279186 8564_ $$uhttps://pub.dzne.de/record/279186/files/DZNE-2025-00714.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279186 909CO $$ooai:pub.dzne.de:279186$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000279186 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810697$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000279186 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2810538$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b4$$kDZNE
000279186 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000279186 9141_ $$y2025
000279186 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000279186 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-09-26T09:40:26Z
000279186 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-09-26T09:40:26Z
000279186 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279186 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-09-26T09:40:26Z
000279186 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
000279186 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
000279186 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
000279186 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x0
000279186 980__ $$ajournal
000279186 980__ $$aVDB
000279186 980__ $$aUNRESTRICTED
000279186 980__ $$aI:(DE-2719)1013026
000279186 9801_ $$aFullTexts