000279188 001__ 279188
000279188 005__ 20250713001426.0
000279188 0247_ $$2doi$$a10.1002/epi4.70028
000279188 0247_ $$2pmid$$apmid:40167314
000279188 0247_ $$2altmetric$$aaltmetric:176012064
000279188 037__ $$aDZNE-2025-00716
000279188 041__ $$aEnglish
000279188 082__ $$a610
000279188 1001_ $$00000-0002-3300-6877$$aWalger, Lennart$$b0
000279188 245__ $$aA public benchmark for human performance in the detection of focal cortical dysplasia.
000279188 260__ $$aHoboken, NJ$$bWiley$$c2025
000279188 3367_ $$2DRIVER$$aarticle
000279188 3367_ $$2DataCite$$aOutput Types/Journal article
000279188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751973496_30314
000279188 3367_ $$2BibTeX$$aARTICLE
000279188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279188 3367_ $$00$$2EndNote$$aJournal Article
000279188 520__ $$aThis study aims to report human performance in the detection of Focal Cortical Dysplasias (FCDs) using an openly available dataset. Additionally, it defines a subset of this data as a 'difficult' test set to establish a public baseline benchmark against which new methods for automated FCD detection can be evaluated.The performance of 28 human readers with varying levels of expertise in detecting FCDs was originally analyzed using 146 subjects (not all of which are openly available), we analyzed the openly available subset of 85 cases. Performance was measured based on the overlap between predicted regions of interest (ROIs) and ground-truth lesion masks, using the Dice-Soerensen coefficient (DSC). The benchmark test set was chosen to consist of 15 subjects most predictive for human performance and 13 subjects identified by at most 3 of the 28 readers.Expert readers achieved an average detection rate of 68%, compared to 45% for non-experts and 27% for laypersons. Neuroradiologists detected the highest percentage of lesions (64%), while psychiatrists detected the least (34%). Neurosurgeons had the highest ROI sensitivity (0.70), and psychiatrists had the highest ROI precision (0.78). The benchmark test set revealed an expert detection rate of 49%.Reporting human performance in FCD detection provides a critical baseline for assessing the effectiveness of automated detection methods in a clinically relevant context. The defined benchmark test set serves as a useful indicator for evaluating advancements in computer-aided FCD detection approaches.Focal cortical dysplasias (FCDs) are malformations of cortical development and one of the most common causes of drug-resistant focal epilepsy. Once found, FCDs can be neurosurgically resected, which leads to seizure freedom in many cases. However, FCDs are difficult to detect in the visual assessment of magnetic resonance imaging. A myriad of algorithms for automated FCD detection have been developed, but their true clinical value remains unclear since there is no benchmark dataset for evaluation and comparison to human performance. Here, we use human FCD detection performance to define a benchmark dataset with which new methods for automated detection can be evaluated.
000279188 536__ $$0G:(DE-HGF)POF4-354$$a354 - Disease Prevention and Healthy Aging (POF4-354)$$cPOF4-354$$fPOF IV$$x0
000279188 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x1
000279188 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000279188 650_7 $$2Other$$aartificial intelligence
000279188 650_7 $$2Other$$acomputer‐aided detection
000279188 650_7 $$2Other$$ahuman performance
000279188 650_7 $$2Other$$areader study
000279188 650_2 $$2MeSH$$aHumans
000279188 650_2 $$2MeSH$$aBenchmarking
000279188 650_2 $$2MeSH$$aMalformations of Cortical Development: diagnostic imaging
000279188 650_2 $$2MeSH$$aMalformations of Cortical Development: diagnosis
000279188 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000279188 650_2 $$2MeSH$$aFemale
000279188 650_2 $$2MeSH$$aMale
000279188 650_2 $$2MeSH$$aAdult
000279188 650_2 $$2MeSH$$aFocal Cortical Dysplasia
000279188 7001_ $$0P:(DE-HGF)0$$aSchmitz, Matthias H$$b1
000279188 7001_ $$0P:(DE-2719)9002598$$aBauer, Tobias$$b2
000279188 7001_ $$0P:(DE-2719)2814290$$aKügler, David$$b3$$udzne
000279188 7001_ $$aSchuch, Fabiane$$b4
000279188 7001_ $$aArendt, Christophe$$b5
000279188 7001_ $$00000-0001-5935-9841$$aBaumgartner, Tobias$$b6
000279188 7001_ $$aBirkenheier, Johannes$$b7
000279188 7001_ $$00000-0002-5905-4121$$aBorger, Valeri$$b8
000279188 7001_ $$aEndler, Christoph$$b9
000279188 7001_ $$aGrau, Franziska$$b10
000279188 7001_ $$aImmanuel, Christian$$b11
000279188 7001_ $$aKölle, Markus$$b12
000279188 7001_ $$aKupczyk, Patrick$$b13
000279188 7001_ $$aLakghomi, Asadeh$$b14
000279188 7001_ $$aMackert, Sarah$$b15
000279188 7001_ $$aNeuhaus, Elisabeth$$b16
000279188 7001_ $$aNordsiek, Julia$$b17
000279188 7001_ $$aOdenthal, Anna-Maria$$b18
000279188 7001_ $$aDague, Karmele Olaciregui$$b19
000279188 7001_ $$aOstermann, Laura$$b20
000279188 7001_ $$00000-0002-8280-6475$$aPukropski, Jan$$b21
000279188 7001_ $$aRacz, Attila$$b22
000279188 7001_ $$avon der Ropp, Klaus$$b23
000279188 7001_ $$aSchmeel, Frederic Carsten$$b24
000279188 7001_ $$aSchrader, Felix$$b25
000279188 7001_ $$aSitter, Aileen$$b26
000279188 7001_ $$aUnruh-Pinheiro, Alexander$$b27
000279188 7001_ $$aVoigt, Marilia$$b28
000279188 7001_ $$aVychopen, Martin$$b29
000279188 7001_ $$avon Wedel, Philip$$b30
000279188 7001_ $$00000-0002-9430-5037$$avon Wrede, Randi$$b31
000279188 7001_ $$aAttenberger, Ulrike$$b32
000279188 7001_ $$aVatter, Hartmut$$b33
000279188 7001_ $$aPhilipsen, Alexandra$$b34
000279188 7001_ $$aBecker, Albert$$b35
000279188 7001_ $$0P:(DE-2719)2812134$$aReuter, Martin$$b36$$udzne
000279188 7001_ $$aHattingen, Elke$$b37
000279188 7001_ $$0P:(DE-2719)9001861$$aRadbruch, Alexander$$b38$$udzne
000279188 7001_ $$00000-0002-3177-8582$$aSurges, Rainer$$b39
000279188 7001_ $$00000-0002-6180-7671$$aRüber, Theodor$$b40$$eLast author
000279188 773__ $$0PERI:(DE-600)2863427-5$$a10.1002/epi4.70028$$gVol. 10, no. 3, p. 778 - 786$$n3$$p778 - 786$$tEpilepsia open$$v10$$x2470-9239$$y2025
000279188 8564_ $$uhttps://pub.dzne.de/record/279188/files/DZNE-2025-00716.pdf$$yOpenAccess
000279188 8564_ $$uhttps://pub.dzne.de/record/279188/files/DZNE-2025-00716.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279188 909CO $$ooai:pub.dzne.de:279188$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000279188 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9002598$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000279188 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2814290$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b3$$kDZNE
000279188 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)2812134$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b36$$kDZNE
000279188 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001861$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b38$$kDZNE
000279188 9101_ $$0I:(DE-588)1065079516$$60000-0002-6180-7671$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b40$$kDZNE
000279188 9131_ $$0G:(DE-HGF)POF4-354$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vDisease Prevention and Healthy Aging$$x0
000279188 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x1
000279188 9141_ $$y2025
000279188 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-05
000279188 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000279188 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEPILEPSIA OPEN : 2022$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-05$$wger
000279188 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-08-08T17:09:27Z
000279188 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-08-08T17:09:27Z
000279188 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279188 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-08-08T17:09:27Z
000279188 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2024-12-05
000279188 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-05
000279188 9201_ $$0I:(DE-2719)1040310$$kAG Reuter$$lArtificial Intelligence in Medicine$$x0
000279188 9201_ $$0I:(DE-2719)1013026$$kAG Stöcker$$lMR Physics$$x1
000279188 9201_ $$0I:(DE-2719)5000075$$kAG Radbruch$$lClinical Neuroimaging$$x2
000279188 980__ $$ajournal
000279188 980__ $$aVDB
000279188 980__ $$aUNRESTRICTED
000279188 980__ $$aI:(DE-2719)1040310
000279188 980__ $$aI:(DE-2719)1013026
000279188 980__ $$aI:(DE-2719)5000075
000279188 9801_ $$aFullTexts