001     279188
005     20250713001426.0
024 7 _ |a 10.1002/epi4.70028
|2 doi
024 7 _ |a pmid:40167314
|2 pmid
024 7 _ |a altmetric:176012064
|2 altmetric
037 _ _ |a DZNE-2025-00716
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Walger, Lennart
|0 0000-0002-3300-6877
|b 0
245 _ _ |a A public benchmark for human performance in the detection of focal cortical dysplasia.
260 _ _ |a Hoboken, NJ
|c 2025
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751973496_30314
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study aims to report human performance in the detection of Focal Cortical Dysplasias (FCDs) using an openly available dataset. Additionally, it defines a subset of this data as a 'difficult' test set to establish a public baseline benchmark against which new methods for automated FCD detection can be evaluated.The performance of 28 human readers with varying levels of expertise in detecting FCDs was originally analyzed using 146 subjects (not all of which are openly available), we analyzed the openly available subset of 85 cases. Performance was measured based on the overlap between predicted regions of interest (ROIs) and ground-truth lesion masks, using the Dice-Soerensen coefficient (DSC). The benchmark test set was chosen to consist of 15 subjects most predictive for human performance and 13 subjects identified by at most 3 of the 28 readers.Expert readers achieved an average detection rate of 68%, compared to 45% for non-experts and 27% for laypersons. Neuroradiologists detected the highest percentage of lesions (64%), while psychiatrists detected the least (34%). Neurosurgeons had the highest ROI sensitivity (0.70), and psychiatrists had the highest ROI precision (0.78). The benchmark test set revealed an expert detection rate of 49%.Reporting human performance in FCD detection provides a critical baseline for assessing the effectiveness of automated detection methods in a clinically relevant context. The defined benchmark test set serves as a useful indicator for evaluating advancements in computer-aided FCD detection approaches.Focal cortical dysplasias (FCDs) are malformations of cortical development and one of the most common causes of drug-resistant focal epilepsy. Once found, FCDs can be neurosurgically resected, which leads to seizure freedom in many cases. However, FCDs are difficult to detect in the visual assessment of magnetic resonance imaging. A myriad of algorithms for automated FCD detection have been developed, but their true clinical value remains unclear since there is no benchmark dataset for evaluation and comparison to human performance. Here, we use human FCD detection performance to define a benchmark dataset with which new methods for automated detection can be evaluated.
536 _ _ |a 354 - Disease Prevention and Healthy Aging (POF4-354)
|0 G:(DE-HGF)POF4-354
|c POF4-354
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a artificial intelligence
|2 Other
650 _ 7 |a computer‐aided detection
|2 Other
650 _ 7 |a human performance
|2 Other
650 _ 7 |a reader study
|2 Other
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Benchmarking
|2 MeSH
650 _ 2 |a Malformations of Cortical Development: diagnostic imaging
|2 MeSH
650 _ 2 |a Malformations of Cortical Development: diagnosis
|2 MeSH
650 _ 2 |a Magnetic Resonance Imaging
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Focal Cortical Dysplasia
|2 MeSH
700 1 _ |a Schmitz, Matthias H
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bauer, Tobias
|0 P:(DE-2719)9002598
|b 2
700 1 _ |a Kügler, David
|0 P:(DE-2719)2814290
|b 3
|u dzne
700 1 _ |a Schuch, Fabiane
|b 4
700 1 _ |a Arendt, Christophe
|b 5
700 1 _ |a Baumgartner, Tobias
|0 0000-0001-5935-9841
|b 6
700 1 _ |a Birkenheier, Johannes
|b 7
700 1 _ |a Borger, Valeri
|0 0000-0002-5905-4121
|b 8
700 1 _ |a Endler, Christoph
|b 9
700 1 _ |a Grau, Franziska
|b 10
700 1 _ |a Immanuel, Christian
|b 11
700 1 _ |a Kölle, Markus
|b 12
700 1 _ |a Kupczyk, Patrick
|b 13
700 1 _ |a Lakghomi, Asadeh
|b 14
700 1 _ |a Mackert, Sarah
|b 15
700 1 _ |a Neuhaus, Elisabeth
|b 16
700 1 _ |a Nordsiek, Julia
|b 17
700 1 _ |a Odenthal, Anna-Maria
|b 18
700 1 _ |a Dague, Karmele Olaciregui
|b 19
700 1 _ |a Ostermann, Laura
|b 20
700 1 _ |a Pukropski, Jan
|0 0000-0002-8280-6475
|b 21
700 1 _ |a Racz, Attila
|b 22
700 1 _ |a von der Ropp, Klaus
|b 23
700 1 _ |a Schmeel, Frederic Carsten
|b 24
700 1 _ |a Schrader, Felix
|b 25
700 1 _ |a Sitter, Aileen
|b 26
700 1 _ |a Unruh-Pinheiro, Alexander
|b 27
700 1 _ |a Voigt, Marilia
|b 28
700 1 _ |a Vychopen, Martin
|b 29
700 1 _ |a von Wedel, Philip
|b 30
700 1 _ |a von Wrede, Randi
|0 0000-0002-9430-5037
|b 31
700 1 _ |a Attenberger, Ulrike
|b 32
700 1 _ |a Vatter, Hartmut
|b 33
700 1 _ |a Philipsen, Alexandra
|b 34
700 1 _ |a Becker, Albert
|b 35
700 1 _ |a Reuter, Martin
|0 P:(DE-2719)2812134
|b 36
|u dzne
700 1 _ |a Hattingen, Elke
|b 37
700 1 _ |a Radbruch, Alexander
|0 P:(DE-2719)9001861
|b 38
|u dzne
700 1 _ |a Surges, Rainer
|0 0000-0002-3177-8582
|b 39
700 1 _ |a Rüber, Theodor
|0 0000-0002-6180-7671
|b 40
|e Last author
773 _ _ |a 10.1002/epi4.70028
|g Vol. 10, no. 3, p. 778 - 786
|0 PERI:(DE-600)2863427-5
|n 3
|p 778 - 786
|t Epilepsia open
|v 10
|y 2025
|x 2470-9239
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279188/files/DZNE-2025-00716.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279188/files/DZNE-2025-00716.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279188
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9002598
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2814290
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 36
|6 P:(DE-2719)2812134
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 38
|6 P:(DE-2719)9001861
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 40
|6 0000-0002-6180-7671
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-354
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Prevention and Healthy Aging
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-05
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EPILEPSIA OPEN : 2022
|d 2024-12-05
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-05
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:09:27Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:09:27Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-05
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-05
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-05
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:09:27Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-05
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-05
920 1 _ |0 I:(DE-2719)1040310
|k AG Reuter
|l Artificial Intelligence in Medicine
|x 0
920 1 _ |0 I:(DE-2719)1013026
|k AG Stöcker
|l MR Physics
|x 1
920 1 _ |0 I:(DE-2719)5000075
|k AG Radbruch
|l Clinical Neuroimaging
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1040310
980 _ _ |a I:(DE-2719)1013026
980 _ _ |a I:(DE-2719)5000075
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21