000279194 001__ 279194
000279194 005__ 20250709100937.0
000279194 0247_ $$2doi$$a10.1016/j.euroneuro.2025.05.007
000279194 0247_ $$2pmid$$apmid:40483774
000279194 0247_ $$2ISSN$$a0924-977X
000279194 0247_ $$2ISSN$$a1873-7862
000279194 037__ $$aDZNE-2025-00722
000279194 041__ $$aEnglish
000279194 082__ $$a610
000279194 1001_ $$aNagy, Tamas$$b0
000279194 245__ $$aPharmacological profiling of major depressive disorder-related multimorbidity clusters.
000279194 260__ $$aAmsterdam$$bElsevier$$c2025
000279194 3367_ $$2DRIVER$$aarticle
000279194 3367_ $$2DataCite$$aOutput Types/Journal article
000279194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751974384_26500
000279194 3367_ $$2BibTeX$$aARTICLE
000279194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279194 3367_ $$00$$2EndNote$$aJournal Article
000279194 520__ $$aWe previously identified seven distinct multimorbidity clusters associated with major depressive disorder through a comprehensive analysis of 1.2 million individuals of multiple cohorts. These clusters, characterized by unique clinical, genetic, and psychiatric and somatic illness risk profiles, implicate divergent treatment pathways and disease management strategies. This study aims to deepen the understanding of these clusters by analyzing drug prescriptions, evaluating the effectiveness of antidepressant treatment strategies, and identifying potential markers for personalized medicine. Utilizing drug prescription data in the format of ATC codes, we performed epidemiological assessments, including multimorbidity (number of diseases), polypharmacy (number of chemical substances), and drug burden (number of prescriptions) analyses across the clusters. We applied linear regression models to assess strength and predictive capability of cluster membership on various metrics, and logistic regression to explore associations with treatment-resistant depression. We also quantified and visualized common antidepressant treatment sequences within each cluster. Our findings indicate significant variations in polypharmacy and drug burden across clusters, with distinct patterns emerging that correlate with the clusters' profiles. Clusters liable to multimorbidity have higher drug burden, even after correction for number of diseases. Furthermore, the three clusters with higher risk for MDD showed different antidepressant treatment profiles; two required significantly more antidepressant prescriptions and had a higher risk for TRD. The detailed pharmacological profiling presented in this study not only corroborates the initial cluster definitions but also enhances our predictive capabilities for treatment outcomes in MDD. By linking pharmacological data with comorbidity profiles, we pave the way for targeted therapeutic interventions.
000279194 536__ $$0G:(DE-HGF)POF4-353$$a353 - Clinical and Health Care Research (POF4-353)$$cPOF4-353$$fPOF IV$$x0
000279194 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000279194 650_7 $$2Other$$aAntidepressants
000279194 650_7 $$2Other$$aMajor depressive disorder
000279194 650_7 $$2Other$$aMultimorbidity
000279194 650_7 $$2Other$$aPharmacology
000279194 650_7 $$2NLM Chemicals$$aAntidepressive Agents
000279194 650_2 $$2MeSH$$aHumans
000279194 650_2 $$2MeSH$$aDepressive Disorder, Major: drug therapy
000279194 650_2 $$2MeSH$$aDepressive Disorder, Major: epidemiology
000279194 650_2 $$2MeSH$$aAntidepressive Agents: therapeutic use
000279194 650_2 $$2MeSH$$aMultimorbidity
000279194 650_2 $$2MeSH$$aMale
000279194 650_2 $$2MeSH$$aPolypharmacy
000279194 650_2 $$2MeSH$$aFemale
000279194 650_2 $$2MeSH$$aMiddle Aged
000279194 650_2 $$2MeSH$$aCluster Analysis
000279194 650_2 $$2MeSH$$aAdult
000279194 650_2 $$2MeSH$$aAged
000279194 7001_ $$aGonda, Xenia$$b1
000279194 7001_ $$aGezsi, Andras$$b2
000279194 7001_ $$aEszlari, Nora$$b3
000279194 7001_ $$aHullam, Gabor$$b4
000279194 7001_ $$aGonzález-Colom, Rubèn$$b5
000279194 7001_ $$aMäkinen, Hannu$$b6
000279194 7001_ $$aPaajanen, Teemu$$b7
000279194 7001_ $$aTorok, Dora$$b8
000279194 7001_ $$aGal, Zsofia$$b9
000279194 7001_ $$aPetschner, Peter$$b10
000279194 7001_ $$aCano, Isaac$$b11
000279194 7001_ $$aKuokkanen, Mikko$$b12
000279194 7001_ $$aSchmidt, Carsten O$$b13
000279194 7001_ $$0P:(DE-2719)9001174$$aVan der Auwera, Sandra$$b14$$udzne
000279194 7001_ $$aRoca, Josep$$b15
000279194 7001_ $$aAntal, Peter$$b16
000279194 7001_ $$aJuhasz, Gabriella$$b17
000279194 773__ $$0PERI:(DE-600)2019305-1$$a10.1016/j.euroneuro.2025.05.007$$gVol. 96, p. 71 - 83$$p71 - 83$$tEuropean neuropsychopharmacology$$v96$$x0924-977X$$y2025
000279194 8564_ $$uhttps://pub.dzne.de/record/279194/files/DZNE-2025-00722%20SUP.zip
000279194 8564_ $$uhttps://pub.dzne.de/record/279194/files/DZNE-2025-00722.pdf$$yOpenAccess
000279194 8564_ $$uhttps://pub.dzne.de/record/279194/files/DZNE-2025-00722.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279194 909CO $$ooai:pub.dzne.de:279194$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
000279194 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9001174$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b14$$kDZNE
000279194 9131_ $$0G:(DE-HGF)POF4-353$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vClinical and Health Care Research$$x0
000279194 9141_ $$y2025
000279194 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-20
000279194 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000279194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR NEUROPSYCHOPHARM : 2022$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279194 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR NEUROPSYCHOPHARM : 2022$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-20
000279194 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-20$$wger
000279194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-20
000279194 9201_ $$0I:(DE-2719)5000001$$kAG Grabe$$lBiomarkers of Dementia in the General Population$$x0
000279194 980__ $$ajournal
000279194 980__ $$aVDB
000279194 980__ $$aUNRESTRICTED
000279194 980__ $$aI:(DE-2719)5000001
000279194 9801_ $$aFullTexts