001     279194
005     20250709100937.0
024 7 _ |a 10.1016/j.euroneuro.2025.05.007
|2 doi
024 7 _ |a pmid:40483774
|2 pmid
024 7 _ |a 0924-977X
|2 ISSN
024 7 _ |a 1873-7862
|2 ISSN
037 _ _ |a DZNE-2025-00722
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nagy, Tamas
|b 0
245 _ _ |a Pharmacological profiling of major depressive disorder-related multimorbidity clusters.
260 _ _ |a Amsterdam
|c 2025
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1751974384_26500
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We previously identified seven distinct multimorbidity clusters associated with major depressive disorder through a comprehensive analysis of 1.2 million individuals of multiple cohorts. These clusters, characterized by unique clinical, genetic, and psychiatric and somatic illness risk profiles, implicate divergent treatment pathways and disease management strategies. This study aims to deepen the understanding of these clusters by analyzing drug prescriptions, evaluating the effectiveness of antidepressant treatment strategies, and identifying potential markers for personalized medicine. Utilizing drug prescription data in the format of ATC codes, we performed epidemiological assessments, including multimorbidity (number of diseases), polypharmacy (number of chemical substances), and drug burden (number of prescriptions) analyses across the clusters. We applied linear regression models to assess strength and predictive capability of cluster membership on various metrics, and logistic regression to explore associations with treatment-resistant depression. We also quantified and visualized common antidepressant treatment sequences within each cluster. Our findings indicate significant variations in polypharmacy and drug burden across clusters, with distinct patterns emerging that correlate with the clusters' profiles. Clusters liable to multimorbidity have higher drug burden, even after correction for number of diseases. Furthermore, the three clusters with higher risk for MDD showed different antidepressant treatment profiles; two required significantly more antidepressant prescriptions and had a higher risk for TRD. The detailed pharmacological profiling presented in this study not only corroborates the initial cluster definitions but also enhances our predictive capabilities for treatment outcomes in MDD. By linking pharmacological data with comorbidity profiles, we pave the way for targeted therapeutic interventions.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Antidepressants
|2 Other
650 _ 7 |a Major depressive disorder
|2 Other
650 _ 7 |a Multimorbidity
|2 Other
650 _ 7 |a Pharmacology
|2 Other
650 _ 7 |a Antidepressive Agents
|2 NLM Chemicals
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Depressive Disorder, Major: drug therapy
|2 MeSH
650 _ 2 |a Depressive Disorder, Major: epidemiology
|2 MeSH
650 _ 2 |a Antidepressive Agents: therapeutic use
|2 MeSH
650 _ 2 |a Multimorbidity
|2 MeSH
650 _ 2 |a Male
|2 MeSH
650 _ 2 |a Polypharmacy
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Middle Aged
|2 MeSH
650 _ 2 |a Cluster Analysis
|2 MeSH
650 _ 2 |a Adult
|2 MeSH
650 _ 2 |a Aged
|2 MeSH
700 1 _ |a Gonda, Xenia
|b 1
700 1 _ |a Gezsi, Andras
|b 2
700 1 _ |a Eszlari, Nora
|b 3
700 1 _ |a Hullam, Gabor
|b 4
700 1 _ |a González-Colom, Rubèn
|b 5
700 1 _ |a Mäkinen, Hannu
|b 6
700 1 _ |a Paajanen, Teemu
|b 7
700 1 _ |a Torok, Dora
|b 8
700 1 _ |a Gal, Zsofia
|b 9
700 1 _ |a Petschner, Peter
|b 10
700 1 _ |a Cano, Isaac
|b 11
700 1 _ |a Kuokkanen, Mikko
|b 12
700 1 _ |a Schmidt, Carsten O
|b 13
700 1 _ |a Van der Auwera, Sandra
|0 P:(DE-2719)9001174
|b 14
|u dzne
700 1 _ |a Roca, Josep
|b 15
700 1 _ |a Antal, Peter
|b 16
700 1 _ |a Juhasz, Gabriella
|b 17
773 _ _ |a 10.1016/j.euroneuro.2025.05.007
|g Vol. 96, p. 71 - 83
|0 PERI:(DE-600)2019305-1
|p 71 - 83
|t European neuropsychopharmacology
|v 96
|y 2025
|x 0924-977X
856 4 _ |u https://pub.dzne.de/record/279194/files/DZNE-2025-00722%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279194/files/DZNE-2025-00722.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279194/files/DZNE-2025-00722.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279194
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)9001174
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-20
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR NEUROPSYCHOPHARM : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR NEUROPSYCHOPHARM : 2022
|d 2024-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-20
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-20
920 1 _ |0 I:(DE-2719)5000001
|k AG Grabe
|l Biomarkers of Dementia in the General Population
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)5000001
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21