000279351 001__ 279351
000279351 005__ 20250713001447.0
000279351 0247_ $$2doi$$a10.1016/j.bpj.2025.04.031
000279351 0247_ $$2pmid$$apmid:40329536
000279351 0247_ $$2ISSN$$a0006-3495
000279351 0247_ $$2ISSN$$a1542-0086
000279351 0247_ $$2altmetric$$aaltmetric:176970711
000279351 037__ $$aDZNE-2025-00728
000279351 041__ $$aEnglish
000279351 082__ $$a570
000279351 1001_ $$aIntze, Antonia$$b0
000279351 245__ $$aEffect of RNA on the supramolecular architecture of α-synuclein fibrils.
000279351 260__ $$aCambridge, Mass.$$bCell Press$$c2025
000279351 3367_ $$2DRIVER$$aarticle
000279351 3367_ $$2DataCite$$aOutput Types/Journal article
000279351 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1751879503_21133
000279351 3367_ $$2BibTeX$$aARTICLE
000279351 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000279351 3367_ $$00$$2EndNote$$aJournal Article
000279351 520__ $$aStructural changes associated with protein aggregation are challenging to study, requiring the combination of experimental techniques providing insights at the molecular level across diverse scales, ranging from nanometers to microns. Understanding these changes is even more complex when aggregation occurs in the presence of molecular cofactors such as nucleic acids and when the resulting aggregates are highly polymorphic. Infrared (IR) spectroscopy is a powerful tool for studying protein aggregates since it combines the label-free sensitivity to the cross-β architecture, an inherent feature of protein supramolecular aggregates, with the possibility to reach nanoscale sensitivity by leveraging atomic force microscopy (AFM)-assisted detection. Here, we present a combined approach that detects IR spectral markers of aggregation using various IR spectroscopy techniques, covering micro-to-nanoscale ranges, to study the effect of RNA on the supramolecular architecture of α-synuclein amyloid aggregates. We show a clear impact of RNA consistent with enhanced intermolecular forces, likely via a stronger hydrogen-bonded network stabilizing the cross-β architecture. AFM-assisted IR spectroscopy was crucial to assess that the more ordered the aggregates are, the stronger the structural impact of RNA. In addition, an RNA-induced reduction of the degree of polymorphism within the aggregate population is obtained.
000279351 536__ $$0G:(DE-HGF)POF4-351$$a351 - Brain Function (POF4-351)$$cPOF4-351$$fPOF IV$$x0
000279351 588__ $$aDataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
000279351 650_7 $$2NLM Chemicals$$aalpha-Synuclein
000279351 650_7 $$063231-63-0$$2NLM Chemicals$$aRNA
000279351 650_7 $$2NLM Chemicals$$aProtein Aggregates
000279351 650_7 $$2NLM Chemicals$$aAmyloid
000279351 650_2 $$2MeSH$$aalpha-Synuclein: chemistry
000279351 650_2 $$2MeSH$$aalpha-Synuclein: metabolism
000279351 650_2 $$2MeSH$$aRNA: chemistry
000279351 650_2 $$2MeSH$$aRNA: metabolism
000279351 650_2 $$2MeSH$$aProtein Aggregates
000279351 650_2 $$2MeSH$$aAmyloid: chemistry
000279351 650_2 $$2MeSH$$aMicroscopy, Atomic Force
000279351 650_2 $$2MeSH$$aSpectrophotometry, Infrared
000279351 650_2 $$2MeSH$$aHumans
000279351 7001_ $$aTemperini, Maria Eleonora$$b1
000279351 7001_ $$0P:(DE-2719)9003548$$aRupert, Jakob$$b2$$udzne
000279351 7001_ $$aPolito, Raffaella$$b3
000279351 7001_ $$aVeber, Alexander$$b4
000279351 7001_ $$aPuskar, Ljiljana$$b5
000279351 7001_ $$aSchade, Ulrich$$b6
000279351 7001_ $$aOrtolani, Michele$$b7
000279351 7001_ $$aZacco, Elsa$$b8
000279351 7001_ $$aTartaglia, Gian Gaetano$$b9
000279351 7001_ $$aGiliberti, Valeria$$b10
000279351 773__ $$0PERI:(DE-600)1477214-0$$a10.1016/j.bpj.2025.04.031$$gVol. 124, no. 12, p. 2005 - 2019$$n12$$p2005 - 2019$$tBiophysical journal$$v124$$x0006-3495$$y2025
000279351 8564_ $$uhttps://pub.dzne.de/record/279351/files/DZNE-2025-00728.pdf$$yOpenAccess
000279351 8564_ $$uhttps://pub.dzne.de/record/279351/files/DZNE-2025-00728.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000279351 909CO $$ooai:pub.dzne.de:279351$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000279351 9101_ $$0I:(DE-588)1065079516$$6P:(DE-2719)9003548$$aDeutsches Zentrum für Neurodegenerative Erkrankungen$$b2$$kDZNE
000279351 9131_ $$0G:(DE-HGF)POF4-351$$1G:(DE-HGF)POF4-350$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lNeurodegenerative Diseases$$vBrain Function$$x0
000279351 9141_ $$y2025
000279351 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-21
000279351 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000279351 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000279351 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
000279351 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
000279351 9201_ $$0I:(DE-2719)1013043$$kAG Milovanovic (Bonn)$$lMolecular Neuroscience$$x0
000279351 980__ $$ajournal
000279351 980__ $$aVDB
000279351 980__ $$aUNRESTRICTED
000279351 980__ $$aI:(DE-2719)1013043
000279351 9801_ $$aFullTexts