001     279354
005     20250828101646.0
024 7 _ |a 10.1177/09622802241313293
|2 doi
024 7 _ |a pmid:39930915
|2 pmid
024 7 _ |a pmc:PMC12177203
|2 pmc
024 7 _ |a 0962-2802
|2 ISSN
024 7 _ |a 1477-0334
|2 ISSN
037 _ _ |a DZNE-2025-00731
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Berger, Moritz
|0 0000-0002-0656-5286
|b 0
245 _ _ |a Modeling the ratio of correlated biomarkers using copula regression.
260 _ _ |a London [u.a.]
|c 2025
|b Sage
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752046529_8071
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Modeling the ratio of two dependent components as a function of covariates is a frequently pursued objective in observational research. Despite the high relevance of this topic in medical studies, where biomarker ratios are often used as surrogate endpoints for specific diseases, existing models are commonly based on oversimplified assumptions, assuming e.g. independence or strictly positive associations between the components. In this paper, we overcome such limitations and propose a regression model where the marginal distributions of the two components are linked by a copula. A key feature of our model is that it allows for both positive and negative associations between the components, with one of the model parameters being directly interpretable in terms of Kendall's rank correlation coefficient. We study our method theoretically, evaluate finite sample properties in a simulation study and demonstrate its efficacy in an application to diagnosis of Alzheimer's disease via ratios of amyloid-beta and total tau protein biomarkers.
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Copula model
|2 Other
650 _ 7 |a distributional regression
|2 Other
650 _ 7 |a gamma distribution
|2 Other
650 _ 7 |a negative dependence
|2 Other
650 _ 7 |a ratio outcome
|2 Other
650 _ 7 |a Biomarkers
|2 NLM Chemicals
650 _ 7 |a Amyloid beta-Peptides
|2 NLM Chemicals
650 _ 7 |a tau Proteins
|2 NLM Chemicals
650 _ 2 |a Biomarkers
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Alzheimer Disease: diagnosis
|2 MeSH
650 _ 2 |a Amyloid beta-Peptides
|2 MeSH
650 _ 2 |a tau Proteins
|2 MeSH
650 _ 2 |a Models, Statistical
|2 MeSH
650 _ 2 |a Regression Analysis
|2 MeSH
650 _ 2 |a Computer Simulation
|2 MeSH
700 1 _ |a Klein, Nadja
|0 0000-0002-5072-5347
|b 1
700 1 _ |a Wagner, Michael
|0 P:(DE-2719)2000057
|b 2
|u dzne
700 1 _ |a Schmid, Matthias
|0 P:(DE-2719)2811245
|b 3
|u dzne
773 _ _ |a 10.1177/09622802241313293
|g Vol. 34, no. 5, p. 968 - 985
|0 PERI:(DE-600)2001539-2
|n 5
|p 968 - 985
|t Statistical methods in medical research
|v 34
|y 2025
|x 0962-2802
856 4 _ |u https://pub.dzne.de/record/279354/files/DZNE-2025-00731%20SUP.pdf
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279354/files/DZNE-2025-00731.pdf
856 4 _ |x pdfa
|u https://pub.dzne.de/record/279354/files/DZNE-2025-00731%20SUP.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279354/files/DZNE-2025-00731.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279354
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2000057
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-2719)2811245
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b STAT METHODS MED RES : 2022
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-27
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-27
920 1 _ |0 I:(DE-2719)1011201
|k AG Wagner
|l Neuropsychology
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1011201
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21