001     279375
005     20250713001504.0
024 7 _ |a 10.3390/ncrna11030045
|2 doi
024 7 _ |a pmid:40559623
|2 pmid
024 7 _ |a pmc:PMC12196295
|2 pmc
024 7 _ |a altmetric:178135718
|2 altmetric
037 _ _ |a DZNE-2025-00752
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Gisa, Verena
|0 P:(DE-2719)9001957
|b 0
|e First author
245 _ _ |a Role of Compensatory miRNA Networks in Cognitive Recovery from Heart Failure.
260 _ _ |a Basel
|c 2025
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752060582_18284
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Heart failure (HF) is associated with an increased risk of cognitive impairment and hippocampal dysfunction, yet the underlying molecular mechanisms remain poorly understood. This study aims to investigate the role of microRNA (miRNA) networks in hippocampus-dependent memory recovery in a mouse model of HF. Methods: CaMKIIδC transgenic (TG) mice, a model for HF, were used to assess hippocampal function at 3 and 6 months of age. Memory performance was evaluated using hippocampus-dependent behavioral tasks. Small RNA sequencing was performed to analyze hippocampal miRNA expression profiles across both time points. Bioinformatic analyses identified miRNAs that potentially regulate genes previously implicated in HF-induced cognitive impairment. Results: We have previously shown that at 3 months of age, CaMKIIδC TG mice exhibited significant memory deficits associated with dysregulated hippocampal gene expression. In this study, we showed that these impairments, memory impairment and hippocampal gene expression, were no longer detectable at 6 months, despite persistent cardiac dysfunction. However, small RNA sequencing revealed a dynamic shift in hippocampal miRNA expression, identifying 27 miRNAs as 'compensatory miRs' that targeted 73% of the transcripts dysregulated at 3 months but reinstated by 6 months. Notably, miR-181a-5p emerged as a central regulatory hub, with its downregulation coinciding with restored memory function. Conclusions: These findings suggest that miRNA networks contribute to the restoration of hippocampal function in HF despite continued cardiac pathology and provide an important compensatory mechanism towards memory impairment. A better understanding of these compensatory miRNA mechanisms may provide novel therapeutic targets for managing HF-related cognitive dysfunction.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Alzheimer
|2 Other
650 _ 7 |a MicroRNA
|2 Other
650 _ 7 |a cognitive impairment
|2 Other
650 _ 7 |a heart failure
|2 Other
650 _ 7 |a hippocampal function
|2 Other
650 _ 7 |a memory recovery
|2 Other
650 _ 7 |a transcriptional homeostasis
|2 Other
700 1 _ |a Islam, Md Rezaul
|0 P:(DE-2719)2811643
|b 1
|u dzne
700 1 _ |a Lbik, Dawid
|0 0000-0003-2950-9487
|b 2
700 1 _ |a Hofmann, Raoul Maximilian
|b 3
700 1 _ |a Pena, Tonatiuh
|0 P:(DE-2719)2811063
|b 4
|u dzne
700 1 _ |a Krüger, Dennis Manfred
|0 P:(DE-2719)2812548
|b 5
|u dzne
700 1 _ |a Burkhardt, Susanne
|0 P:(DE-2719)2810773
|b 6
|u dzne
700 1 _ |a Schütz, Anna-Lena
|0 P:(DE-2719)2810585
|b 7
|u dzne
700 1 _ |a Sananbenesi, Farahnaz
|0 P:(DE-2719)2811099
|b 8
|u dzne
700 1 _ |a Toischer, Karl
|b 9
700 1 _ |a Fischer, Andre
|0 P:(DE-2719)2000047
|b 10
|e Last author
773 _ _ |a 10.3390/ncrna11030045
|g Vol. 11, no. 3, p. 45 -
|0 PERI:(DE-600)2813993-8
|n 3
|p 45
|t Non-Coding RNA
|v 11
|y 2025
|x 2311-553X
856 4 _ |u https://pub.dzne.de/record/279375/files/DZNE-2025-00752%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279375/files/DZNE-2025-00752.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279375/files/DZNE-2025-00752.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279375
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001957
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)2811643
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2811063
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)2812548
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)2810773
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810585
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811099
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2000047
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NON-CODING RNA : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-10T15:32:06Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-10T15:32:06Z
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-28
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 1 _ |0 I:(DE-2719)1410002
|k AG Fischer
|l Epigenetics and Systems Medicine in Neurodegenerative Diseases
|x 0
920 1 _ |0 I:(DE-2719)1440016
|k Bioinformatics Unit (Göttingen)
|l Bioinformatics and Genome Dynamics Core (Göttingen)
|x 1
920 1 _ |0 I:(DE-2719)1410004
|k AG Sananbenesi
|l Genome Dynamics in Neurodegenerative Diseases
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1410002
980 _ _ |a I:(DE-2719)1440016
980 _ _ |a I:(DE-2719)1410004
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21