001     279428
005     20250710100949.0
024 7 _ |a 10.1371/journal.pone.0326678
|2 doi
024 7 _ |a pmid:40591905
|2 pmid
037 _ _ |a DZNE-2025-00759
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kotowicz, Malwina
|0 P:(DE-2719)9001224
|b 0
|e First author
245 _ _ |a Gain efficiency with streamlined and automated data processing: Examples from high-throughput monoclonal antibody production.
260 _ _ |a San Francisco, California, US
|c 2025
|b PLOS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752061257_5351
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Data management and sample tracking in complex biological workflows are essential steps to ensure necessary documentation and guarantee reusability of data and metadata. Currently, these steps pose challenges related to correct annotation and labeling, error detection, and safeguarding the quality of documentation. With growing acquisition of biological data and the expanding automatization of laboratory workflows, manual processing of sample data is no longer favorable, as it is time- and resource-consuming, prone to biases and errors, and lacks scalability and standardization. Thus, managing heterogeneous biological data calls for efficient and tailored systems, especially in laboratories run by biologists with limited computational expertise. Here, we showcase how to meet these challenges with a modular pipeline for data processing, facilitating the complex production of monoclonal antibodies from single B-cells. We present best practices for development of data processing pipelines concerned with extensive acquisition of biological data that undergoes continuous manipulation and analysis. Moreover, we assess the versatility of proposed design principles through a proof-of-concept data processing pipeline for automated induced pluripotent stem cell culture and differentiation. We show that our approach streamlines data management operations, speeds up experimental cycles and leads to enhanced reproducibility. Finally, adhering to the presented guidelines will promote compliance with FAIR principles upon publishing.
536 _ _ |a 899 - ohne Topic (POF4-899)
|0 G:(DE-HGF)POF4-899
|c POF4-899
|f POF IV
|x 0
536 _ _ |a 353 - Clinical and Health Care Research (POF4-353)
|0 G:(DE-HGF)POF4-353
|c POF4-353
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Antibodies, Monoclonal
|2 NLM Chemicals
650 _ 2 |a Antibodies, Monoclonal: biosynthesis
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: cytology
|2 MeSH
650 _ 2 |a Induced Pluripotent Stem Cells: metabolism
|2 MeSH
650 _ 2 |a B-Lymphocytes: immunology
|2 MeSH
650 _ 2 |a B-Lymphocytes: cytology
|2 MeSH
650 _ 2 |a B-Lymphocytes: metabolism
|2 MeSH
650 _ 2 |a Reproducibility of Results
|2 MeSH
650 _ 2 |a High-Throughput Screening Assays: methods
|2 MeSH
650 _ 2 |a Cell Differentiation
|2 MeSH
650 _ 2 |a Workflow
|2 MeSH
650 _ 2 |a Automation
|2 MeSH
700 1 _ |a Shumanska, Magdalena
|0 P:(DE-2719)9002857
|b 1
700 1 _ |a Fengler, Sven
|0 P:(DE-2719)2812244
|b 2
700 1 _ |a Kurkowsky, Birgit
|0 P:(DE-2719)2810323
|b 3
|u dzne
700 1 _ |a Meyer-Berhorn, Anja
|0 P:(DE-2719)9000668
|b 4
|u dzne
700 1 _ |a Moretti, Elisa
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Blersch, Josephine
|0 P:(DE-2719)9000491
|b 6
700 1 _ |a Schmidt, Gisela
|0 P:(DE-2719)9001848
|b 7
700 1 _ |a Kreye, Jakob
|0 P:(DE-2719)2811468
|b 8
700 1 _ |a van Hoof, Scott
|0 P:(DE-2719)2812820
|b 9
700 1 _ |a Sánchez-Sendín, Elisa
|0 P:(DE-2719)2812653
|b 10
700 1 _ |a Reincke, S Momsen
|0 P:(DE-2719)2812526
|b 11
700 1 _ |a Krüger, Lars
|0 P:(DE-2719)2810335
|b 12
700 1 _ |a Prüß, Harald
|0 P:(DE-2719)2810931
|b 13
700 1 _ |a Denner, Philip
|0 P:(DE-2719)2810245
|b 14
700 1 _ |a Fava, Eugenio
|0 P:(DE-2719)2159508
|b 15
700 1 _ |a Stappert, Dominik
|0 P:(DE-2719)2812160
|b 16
|e Last author
773 _ _ |a 10.1371/journal.pone.0326678
|g Vol. 20, no. 7, p. e0326678 -
|0 PERI:(DE-600)2267670-3
|n 7
|p e0326678 -
|t PLOS ONE
|v 20
|y 2025
|x 1932-6203
856 4 _ |u https://pub.dzne.de/record/279428/files/DZNE-2025-00759%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279428/files/DZNE-2025-00759.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279428/files/DZNE-2025-00759.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279428
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001224
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 1
|6 P:(DE-2719)9002857
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)2812244
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)2810323
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)9000668
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 6
|6 P:(DE-2719)9000491
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)9001848
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2811468
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 9
|6 P:(DE-2719)2812820
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 10
|6 P:(DE-2719)2812653
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2812526
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 12
|6 P:(DE-2719)2810335
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2810931
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 14
|6 P:(DE-2719)2810245
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 15
|6 P:(DE-2719)2159508
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 16
|6 P:(DE-2719)2812160
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF4-890
|0 G:(DE-HGF)POF4-899
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-353
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Clinical and Health Care Research
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLOS ONE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-02-08T09:37:46Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-02-08T09:37:46Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-16
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-16
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
920 1 _ |0 I:(DE-2719)1040190
|k LAT
|l Laboratory Automation Technologies (CRFS-LAT)
|x 0
920 1 _ |0 I:(DE-2719)1040260
|k LIS
|l Library and Information Services (CRFS-LIS)
|x 1
920 1 _ |0 I:(DE-2719)1810003
|k AG Prüß
|l Autoimmune Encephalopathies
|x 2
920 1 _ |0 I:(DE-2719)1030028
|k Tech Transfer
|l Technology Transfer and Industry Collaborations Unit
|x 3
920 1 _ |0 I:(DE-2719)1040000
|k CRFS
|l Core Research Facilities & Services
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1040190
980 _ _ |a I:(DE-2719)1040260
980 _ _ |a I:(DE-2719)1810003
980 _ _ |a I:(DE-2719)1030028
980 _ _ |a I:(DE-2719)1040000
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21