001     279434
005     20250720001532.0
024 7 _ |a 10.1007/s00216-025-05890-4
|2 doi
024 7 _ |a pmid:40343460
|2 pmid
024 7 _ |a pmc:PMC12206189
|2 pmc
024 7 _ |a 1618-2642
|2 ISSN
024 7 _ |a 1618-2650
|2 ISSN
024 7 _ |a altmetric:176971494
|2 altmetric
037 _ _ |a DZNE-2025-00765
041 _ _ |a English
100 1 _ |a Wang, Lian Y
|b 0
245 _ _ |a Label-free quantitative shotgun analysis of bis(monoacylglycero)phosphate lipids.
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752563454_3119
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interest in the role of bis(monoacylglycero)phosphate (BMP) lipids in lysosomal function has significantly grown in recent years. Emerging evidence highlights BMPs as critical players not only in Niemann-Pick disease type C (NPC) but also in other pathologies such as neurodegeneration, cardiovascular diseases, and cancers. However, the selective analysis of BMPs is significantly hindered by isomeric phosphatidylglycerol (PG) lipids. While this can be addressed by chromatographic separation, it poses a significant challenge for shotgun lipidomics approaches. Here, we present a shotgun lipidomics strategy to detect and separate BMPs from PGs using differential fragmentation of sodiated ions. This approach, including isotope correction, is integrated into an existing quantitative shotgun lipidomics workflow (Lipidyzer combined with Shotgun Lipidomics Assistant software) that simultaneously quantifies >1400 lipids. Validation using K-562 cell extracts demonstrated acceptable linearity, trueness, repeatability, and a limit of quantification of 0.12 µM, confirming robust analytical performance. Finally, characteristic accumulation of BMP lipids is shown in bone marrow-derived macrophages from NPC mice, demonstrating its applicability. Our method presents a quantitative, selective, rapid, and robust solution for shotgun-based BMP analysis without the need for extensive chromatographic separation or derivatization. The integration of BMP lipid detection into the Lipidyzer platform, alongside the recently launched iSODA data visualization tool, empowers chemists and biologists to gain deeper insights into BMP lipid biology.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a BMP
|2 Other
650 _ 7 |a Flow injection
|2 Other
650 _ 7 |a Label free
|2 Other
650 _ 7 |a Mass spectrometry
|2 Other
650 _ 7 |a Shotgun lipidomics
|2 Other
650 _ 7 |a Monoglycerides
|2 NLM Chemicals
650 _ 7 |a bis(monoacylglyceryl)phosphate
|2 NLM Chemicals
650 _ 7 |a Lysophospholipids
|2 NLM Chemicals
650 _ 2 |a Monoglycerides: analysis
|2 MeSH
650 _ 2 |a Monoglycerides: metabolism
|2 MeSH
650 _ 2 |a Animals
|2 MeSH
650 _ 2 |a Lipidomics: methods
|2 MeSH
650 _ 2 |a Mice
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Lysophospholipids: analysis
|2 MeSH
650 _ 2 |a Lysophospholipids: metabolism
|2 MeSH
650 _ 2 |a Niemann-Pick Disease, Type C: metabolism
|2 MeSH
650 _ 2 |a Macrophages: chemistry
|2 MeSH
650 _ 2 |a Macrophages: metabolism
|2 MeSH
650 _ 2 |a Limit of Detection
|2 MeSH
650 _ 2 |a Tandem Mass Spectrometry: methods
|2 MeSH
700 1 _ |a Derks, Rico J E
|b 1
700 1 _ |a Brewster, Kevin A J
|b 2
700 1 _ |a Prtvar, Danilo
|0 P:(DE-2719)9002550
|b 3
|u dzne
700 1 _ |a Tahirovic, Sabina
|0 P:(DE-2719)2442036
|b 4
|u dzne
700 1 _ |a Berghoff, Stefan A
|0 P:(DE-2719)9001700
|b 5
|u dzne
700 1 _ |a Giera, Martin
|0 0000-0003-1684-1894
|b 6
773 _ _ |a 10.1007/s00216-025-05890-4
|g Vol. 417, no. 16, p. 3665 - 3673
|0 PERI:(DE-600)1459122-4
|n 16
|p 3665 - 3673
|t Analytical and bioanalytical chemistry
|v 417
|y 2025
|x 1618-2642
856 4 _ |u https://pub.dzne.de/record/279434/files/DZNE-2025-00765%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279434/files/DZNE-2025-00765.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279434/files/DZNE-2025-00765.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279434
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 3
|6 P:(DE-2719)9002550
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2442036
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 5
|6 P:(DE-2719)9001700
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-07
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANAL BIOANAL CHEM : 2022
|d 2025-01-07
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-07
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-07
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2025-01-07
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-07
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-07
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2025-01-07
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-07
920 1 _ |0 I:(DE-2719)1140003
|k AG Tahirovic
|l Juvenile Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1110008
|k AG Simons
|l Molecular Neurobiology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1140003
980 _ _ |a I:(DE-2719)1110008
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21