001 | 279438 | ||
005 | 20250720001547.0 | ||
024 | 7 | _ | |a 10.1038/s41467-025-60638-z |2 doi |
024 | 7 | _ | |a pmid:40593564 |2 pmid |
024 | 7 | _ | |a pmc:PMC12219630 |2 pmc |
024 | 7 | _ | |a altmetric:178609240 |2 altmetric |
037 | _ | _ | |a DZNE-2025-00769 |
041 | _ | _ | |a English |
082 | _ | _ | |a 500 |
100 | 1 | _ | |a Breimann, Stephan |0 P:(DE-2719)9001161 |b 0 |e First author |
245 | _ | _ | |a Charting γ-secretase substrates by explainable AI. |
260 | _ | _ | |a [London] |c 2025 |b Springer Nature |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1752743995_26699 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Proteases recognize substrates by decoding sequence information-an essential cellular process elusive when recognition motifs are absent. Here, we unravel this problem for γ-secretase, an intramembrane-cleaving protease associated with Alzheimer's disease and cancer, by developing Comparative Physicochemical Profiling (CPP), a sequence-based algorithm for identifying interpretable physicochemical features. We show that CPP deciphers a γ-secretase substrate signature with single-residue resolution, which can explain the conformational transitions observed in substrates upon γ-secretase binding. Using machine learning, we predict the entire human γ-secretase substrate scope, revealing numerous previously unknown substrates. Our approach outperforms state-of-the-art protein language models, improving prediction accuracy from 60% to 90%, and achieves an 88% success rate in experimental validation. Building on these advancements, we identify pathways and diseases not linked before to γ-secretase. Generally, CPP decodes physicochemical signatures-a concept that extends beyond sequence motifs. We anticipate that our approach will be broadly applicable to diverse molecular recognition processes. |
536 | _ | _ | |a 352 - Disease Mechanisms (POF4-352) |0 G:(DE-HGF)POF4-352 |c POF4-352 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de |
650 | _ | 7 | |a Amyloid Precursor Protein Secretases |0 EC 3.4.- |2 NLM Chemicals |
650 | _ | 2 | |a Amyloid Precursor Protein Secretases: metabolism |2 MeSH |
650 | _ | 2 | |a Amyloid Precursor Protein Secretases: chemistry |2 MeSH |
650 | _ | 2 | |a Amyloid Precursor Protein Secretases: genetics |2 MeSH |
650 | _ | 2 | |a Humans |2 MeSH |
650 | _ | 2 | |a Machine Learning |2 MeSH |
650 | _ | 2 | |a Substrate Specificity |2 MeSH |
650 | _ | 2 | |a Alzheimer Disease: metabolism |2 MeSH |
650 | _ | 2 | |a Algorithms |2 MeSH |
650 | _ | 2 | |a Protein Binding |2 MeSH |
700 | 1 | _ | |a Kamp, Frits |0 P:(DE-2719)2812549 |b 1 |
700 | 1 | _ | |a Basset, Gabriele |b 2 |
700 | 1 | _ | |a Abou-Ajram, Claudia |b 3 |
700 | 1 | _ | |a Güner, Gökhan |0 P:(DE-2719)2812025 |b 4 |u dzne |
700 | 1 | _ | |a Yanagida, Kanta |b 5 |
700 | 1 | _ | |a Okochi, Masayasu |b 6 |
700 | 1 | _ | |a Müller, Stephan A |0 P:(DE-2719)2810938 |b 7 |
700 | 1 | _ | |a Lichtenthaler, Stefan F |0 P:(DE-2719)2181459 |b 8 |
700 | 1 | _ | |a Langosch, Dieter |0 P:(DE-2719)9001125 |b 9 |
700 | 1 | _ | |a Frishman, Dmitrij |b 10 |
700 | 1 | _ | |a Steiner, Harald |0 P:(DE-2719)2000023 |b 11 |e Last author |
773 | _ | _ | |a 10.1038/s41467-025-60638-z |g Vol. 16, no. 1, p. 5428 |0 PERI:(DE-600)2553671-0 |n 1 |p 5428 |t Nature Communications |v 16 |y 2025 |x 2041-1723 |
787 | 0 | _ | |a Breimann, Stephan |d Zenodo, 2025 |i RelatedTo |0 DZNE-2025-00862 |r |t AAanalysis, v1.0.0 |
856 | 4 | _ | |u https://pub.dzne.de/record/279438/files/DZNE-2025-00769%20SUP.zip |
856 | 4 | _ | |u https://pub.dzne.de/record/279438/files/DZNE-2025-00769.pdf |y OpenAccess |
856 | 4 | _ | |u https://pub.dzne.de/record/279438/files/DZNE-2025-00769.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:pub.dzne.de:279438 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 0 |6 P:(DE-2719)9001161 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 4 |6 P:(DE-2719)2812025 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 7 |6 P:(DE-2719)2810938 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 8 |6 P:(DE-2719)2181459 |
910 | 1 | _ | |a Deutsches Zentrum für Neurodegenerative Erkrankungen |0 I:(DE-588)1065079516 |k DZNE |b 11 |6 P:(DE-2719)2000023 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Neurodegenerative Diseases |1 G:(DE-HGF)POF4-350 |0 G:(DE-HGF)POF4-352 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Disease Mechanisms |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2025-01-02 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2025-01-02 |
915 | _ | _ | |a IF >= 15 |0 StatID:(DE-HGF)9915 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2022 |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2025-01-02 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2025-01-02 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2025-01-02 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2024-01-30T07:48:07Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2025-01-02 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2025-01-02 |
920 | 1 | _ | |0 I:(DE-2719)1110000-1 |k AG Steiner |l Biochemistry of γ-Secretase |x 0 |
920 | 1 | _ | |0 I:(DE-2719)1110006 |k AG Lichtenthaler |l Neuroproteomics |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-2719)1110000-1 |
980 | _ | _ | |a I:(DE-2719)1110006 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|