001     279438
005     20250720001547.0
024 7 _ |a 10.1038/s41467-025-60638-z
|2 doi
024 7 _ |a pmid:40593564
|2 pmid
024 7 _ |a pmc:PMC12219630
|2 pmc
024 7 _ |a altmetric:178609240
|2 altmetric
037 _ _ |a DZNE-2025-00769
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Breimann, Stephan
|0 P:(DE-2719)9001161
|b 0
|e First author
245 _ _ |a Charting γ-secretase substrates by explainable AI.
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752743995_26699
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Proteases recognize substrates by decoding sequence information-an essential cellular process elusive when recognition motifs are absent. Here, we unravel this problem for γ-secretase, an intramembrane-cleaving protease associated with Alzheimer's disease and cancer, by developing Comparative Physicochemical Profiling (CPP), a sequence-based algorithm for identifying interpretable physicochemical features. We show that CPP deciphers a γ-secretase substrate signature with single-residue resolution, which can explain the conformational transitions observed in substrates upon γ-secretase binding. Using machine learning, we predict the entire human γ-secretase substrate scope, revealing numerous previously unknown substrates. Our approach outperforms state-of-the-art protein language models, improving prediction accuracy from 60% to 90%, and achieves an 88% success rate in experimental validation. Building on these advancements, we identify pathways and diseases not linked before to γ-secretase. Generally, CPP decodes physicochemical signatures-a concept that extends beyond sequence motifs. We anticipate that our approach will be broadly applicable to diverse molecular recognition processes.
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a Amyloid Precursor Protein Secretases
|0 EC 3.4.-
|2 NLM Chemicals
650 _ 2 |a Amyloid Precursor Protein Secretases: metabolism
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: chemistry
|2 MeSH
650 _ 2 |a Amyloid Precursor Protein Secretases: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Machine Learning
|2 MeSH
650 _ 2 |a Substrate Specificity
|2 MeSH
650 _ 2 |a Alzheimer Disease: metabolism
|2 MeSH
650 _ 2 |a Algorithms
|2 MeSH
650 _ 2 |a Protein Binding
|2 MeSH
700 1 _ |a Kamp, Frits
|0 P:(DE-2719)2812549
|b 1
700 1 _ |a Basset, Gabriele
|b 2
700 1 _ |a Abou-Ajram, Claudia
|b 3
700 1 _ |a Güner, Gökhan
|0 P:(DE-2719)2812025
|b 4
|u dzne
700 1 _ |a Yanagida, Kanta
|b 5
700 1 _ |a Okochi, Masayasu
|b 6
700 1 _ |a Müller, Stephan A
|0 P:(DE-2719)2810938
|b 7
700 1 _ |a Lichtenthaler, Stefan F
|0 P:(DE-2719)2181459
|b 8
700 1 _ |a Langosch, Dieter
|0 P:(DE-2719)9001125
|b 9
700 1 _ |a Frishman, Dmitrij
|b 10
700 1 _ |a Steiner, Harald
|0 P:(DE-2719)2000023
|b 11
|e Last author
773 _ _ |a 10.1038/s41467-025-60638-z
|g Vol. 16, no. 1, p. 5428
|0 PERI:(DE-600)2553671-0
|n 1
|p 5428
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
787 0 _ |a Breimann, Stephan
|d Zenodo, 2025
|i RelatedTo
|0 DZNE-2025-00862
|r
|t AAanalysis, v1.0.0
856 4 _ |u https://pub.dzne.de/record/279438/files/DZNE-2025-00769%20SUP.zip
856 4 _ |u https://pub.dzne.de/record/279438/files/DZNE-2025-00769.pdf
|y OpenAccess
856 4 _ |u https://pub.dzne.de/record/279438/files/DZNE-2025-00769.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:pub.dzne.de:279438
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 0
|6 P:(DE-2719)9001161
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 4
|6 P:(DE-2719)2812025
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 7
|6 P:(DE-2719)2810938
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 8
|6 P:(DE-2719)2181459
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 11
|6 P:(DE-2719)2000023
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 1 _ |0 I:(DE-2719)1110000-1
|k AG Steiner
|l Biochemistry of γ-Secretase
|x 0
920 1 _ |0 I:(DE-2719)1110006
|k AG Lichtenthaler
|l Neuroproteomics
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-2719)1110000-1
980 _ _ |a I:(DE-2719)1110006
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21