001     279442
005     20250720001551.0
024 7 _ |a 10.1016/j.molcel.2025.05.036
|2 doi
024 7 _ |a pmid:40578348
|2 pmid
024 7 _ |a 1097-2765
|2 ISSN
024 7 _ |a 1097-4164
|2 ISSN
024 7 _ |a altmetric:178418680
|2 altmetric
037 _ _ |a DZNE-2025-00773
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rothemann, Robin Alexander
|b 0
245 _ _ |a Interaction with AK2A links AIFM1 to cellular energy metabolism.
260 _ _ |a [Cambridge, Mass.]
|c 2025
|b Cell Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1752564277_3117
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Apoptosis-inducing factor 1 (AIFM1) is a flavoprotein essential for mitochondrial function and biogenesis. Its interaction with MIA40/CHCHD4, the central component of the mitochondrial disulfide relay, accounts for some, but not all, aspects of AIFM1 function. We provide a high-confidence AIFM1 interactome that elucidates functional partners within the mitochondrial intermembrane space. We found that AIFM1 binding to adenylate kinase 2 (AK2), an essential enzyme that maintains cellular adenine nucleotide pools, depends on the AK2 C-terminal domain. High-resolution cryoelectron microscopy (cryo-EM) and biochemical analyses showed that both MIA40 and AK2A bind the AIFM1 C-terminal β-sheet domain. Their binding enhances NADH oxidoreductase activity by locking an active dimer conformation and, in the case of MIA40, affecting the cofactor-binding site. The AIFM1-AK2A interaction is important during mitochondrial respiration because AIFM1 serves as a recruiting hub within the IMS, regulating mitochondrial bioenergetic output by creating hotspots of metabolic enzymes.
536 _ _ |a 351 - Brain Function (POF4-351)
|0 G:(DE-HGF)POF4-351
|c POF4-351
|f POF IV
|x 0
536 _ _ |a 352 - Disease Mechanisms (POF4-352)
|0 G:(DE-HGF)POF4-352
|c POF4-352
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: pub.dzne.de
650 _ 7 |a AIFM1
|2 Other
650 _ 7 |a AK2
|2 Other
650 _ 7 |a ATP
|2 Other
650 _ 7 |a ATP transport
|2 Other
650 _ 7 |a MIA40/CHCHD4
|2 Other
650 _ 7 |a MICOS
|2 Other
650 _ 7 |a metabolism
|2 Other
650 _ 7 |a mitochondria
|2 Other
700 1 _ |a Pavlenko, Egor
|b 1
700 1 _ |a Mondal, Mrityunjoy
|0 P:(DE-2719)9001754
|b 2
|u dzne
700 1 _ |a Gerlich, Sarah
|b 3
700 1 _ |a Grobushkin, Pavel
|b 4
700 1 _ |a Mostert, Sebastian
|b 5
700 1 _ |a Racho, Julia
|b 6
700 1 _ |a Weiss, Konstantin
|b 7
700 1 _ |a Stobbe, Dylan
|b 8
700 1 _ |a Stillger, Katharina
|b 9
700 1 _ |a Lapacz, Kim
|b 10
700 1 _ |a Salscheider, Silja Lucia
|b 11
700 1 _ |a Petrungaro, Carmelina
|b 12
700 1 _ |a Ehninger, Dan
|0 P:(DE-2719)2289209
|b 13
|u dzne
700 1 _ |a Nguyen, Thi Hoang Duong
|b 14
700 1 _ |a Dengjel, Jörn
|b 15
700 1 _ |a Neundorf, Ines
|b 16
700 1 _ |a Bano, Daniele
|0 P:(DE-2719)2158358
|b 17
|u dzne
700 1 _ |a Poepsel, Simon
|b 18
700 1 _ |a Riemer, Jan
|b 19
773 _ _ |a 10.1016/j.molcel.2025.05.036
|g p. S1097276525005003
|0 PERI:(DE-600)2001948-8
|n 13
|p 2550 - 2566.e6
|t Molecular cell
|v 85
|y 2025
|x 1097-2765
856 4 _ |u https://pub.dzne.de/record/279442/files/DZNE-2025-00773%20SUP.zip
856 4 _ |y OpenAccess
|u https://pub.dzne.de/record/279442/files/DZNE-2025-00773.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://pub.dzne.de/record/279442/files/DZNE-2025-00773.pdf?subformat=pdfa
909 C O |o oai:pub.dzne.de:279442
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 2
|6 P:(DE-2719)9001754
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 13
|6 P:(DE-2719)2289209
910 1 _ |a Deutsches Zentrum für Neurodegenerative Erkrankungen
|0 I:(DE-588)1065079516
|k DZNE
|b 17
|6 P:(DE-2719)2158358
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-351
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Brain Function
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Neurodegenerative Diseases
|1 G:(DE-HGF)POF4-350
|0 G:(DE-HGF)POF4-352
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Disease Mechanisms
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-06
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b MOL CELL : 2022
|d 2025-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MOL CELL : 2022
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-06
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-06
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-06
920 1 _ |0 I:(DE-2719)1013003
|k AG Bano
|l Aging and Neurodegeneration
|x 0
920 1 _ |0 I:(DE-2719)1013005
|k AG Ehninger
|l Translational Biogerontology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-2719)1013003
980 _ _ |a I:(DE-2719)1013005
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21